
Dirty COW

Lecture 7

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Introduction

 Dirty COW (Copy-On-Write) vulnerability: race condition
vulnerability

 where? Linux kernel
 the code of copy-on-write inside Linux kernel

 when? existed since Sep 2007, and discovered and exploited
in Oct 2016

 consequence? affects all Linux-based OS (including Android)
 gain root privilege
 modify any protected file (even only readable)

Memory Mapping
using mmap()

 let’s discuss how memory mapping works
 in Unix, mmap(): maps files into memory

 default mapping type: file-backed mapping
 map an area of a process’s virtual memory to files

 means reading or writing to those areas of memory causes the
file to be read or written line ① opens a file in read-write

mode.
• O_RDWR: open for reading and

writing.

int open(const char *pathname, int flags);
• open() system call opens the file specified by pathname. if the specified file does not

exist, it may optionally (if O_CREAT is specified in flags) be created by open().
• the return value of open() is a file descriptor.

int fstat(int fildes, struct stat *buf);
• fstat() function shall obtain

information about an open file
associated with the file descriptor
fildes, and shall write it to the area
pointed to by buf.

Memory Mapping using mmap()

 nmap(): create a mapped memory
 1st arg: starting address for the mapped memory

 if NULL, kernel will decide the address
 2nd arg: size of the mapped memory
 3rd arg: if the memory is readable or writable.

 should match the access type from line①; otherwise, mapping fails
 in our code, the file is opened with O_RDWR, we can map using PROT_READ

and PROT_WRITE
 4th arg: determining whether an update to the mapping is visible to other

processes mapping the same region; whether the update is carried
through to the underlying file

 5th arg: file that needs to be mapped
 6th arg: offset indicating from where inside the file the mapping should

start

line  opens a file in read-write
mode.

https://docs.microsoft.com/en-us/dotnet/standard/io/memory-mapped-files

st_size: the size of the file in bytes

https://docs.microsoft.com/en-us/dotnet/standard/io/memory-mapped-files

Memory Mapping using mmap()

 once a file is mapped to memory, we can access the file by reading
from and writing to the mapped memory

read 10 bytes from the file using a memory-
access function memcpy()

void *memcpy(void *restrict dest, const void *restrict src, size_t n);
• memcpy() function copies n bytes from memory area src to memory area dest.
• copying the data from one memory location to another location

write a string to the file

clean up mapping

int munmap(void *addr, size_t length);
• munmap() system call deletes the mappings for the specified address range, and causes

further references to addresses within the range to generate invalid memory references.

close a file

Memory Mapping
using mmap()

 when accessing a file, we usually use read() and write()
 trapping into kernel (invoke a kernel routine)
 copying data between the user space and the kernel space

 advantage of nmap()
 accessing file becomes memory operations (conducted entirely in

user space)
 the time spent on file access can be reduced

 disadvantage of nmap()
 performance improvement is not free
 requiring memory usage

 commit a block of memory to the mapped file
 mapping a large file into memory???

 the memory usage becomes a concern
 mapping a small portion of file, memory mapping is beneficial

MAP_SHARED
and MAP_PRIVATE

 mmap() system call: create a new mapping in virtual
address space of the calling process

 when used on a file, the file content is loaded into physical
memory, which will be mapped to the calling process’s
virtual memory

 when multiple processes map the same file to memory, the
physical memory for file content is the same

 although they map the file to different virtual memory addresses
 if mapping file using MAP_SHARED option

 writes to the mapped memory update the shared physical
memory

 the update is immediately visible to other processes

MAP_SHARED and MAP_PRIVATE

MAP_SHARED:
• the mapped memory behaves

like a shared memory
between the two processes.

• when multiple processes map
the same file to memory, they
can map the file to different
virtual memory addresses, but
the physical address where the
file content is held is same.

MAP_SHARED

if
make change

change
reflected

change
reflected

MAP_SHARED and MAP_PRIVATE

 MAP_PRIVATE is used if a process wants to have a private copy of file, and it
does not want any update to the private copy to affect the original file

 to create a private copy, the file content needs to be copied to the private
memory

 initially pointing to the shared physical memory
 kernel allocates a new block of physical memory, and copy the file content from the

master copy to the new memory
 kernel updates the reference, so the mapped virtual memory will point to the new

physical memory
 read and write will be conducted on the private copy

MAP_PRIVATE:
• the file is mapped to the

memory private to the calling
process.

• changes made to memory will
not be visible to other processes;
nor will the changes be carried
through to the underlying fileMAP_PRIVATEno longer mapped

to the actual file

Copy On Write (COW)

 COW: an optimization technique allowing virtual pages of
memory in different processes to map to the same physical
memory pages, if they have identical contents

 COW is widely used in modern OS
 e.g., a parent process creates a child process using fork()

 child process has its own private memory, with the initial contents
being copied from parent process

 OS lets the child process share the parent process’s memory by
making page entries point to the same physical memory

 if the memory is only read, memory copy is not required
 if any one tries to write to the memory, an exception will be raised

and OS will allocate new physical memory for the child process (dirty
page), copy contents from the parent process, change each process’s
(parent and child) page table so that it points to its own private copy

Mapping Read-Only Files: Create a
File First

1. create a file zzz in the root directory.
2. set its owner/group to root and make it readable (not writable)

to other users.

 with normal account:
 we can only open this file using read_only flag (O_RDONLY).
 if we map this file to the memory, we need to use PROT_READ

option, so the memory is read-only.

ls command reference: https://www.techonthenet.com/unix/basic/ls.php
Unix file permissions reference: https://cs.hofstra.edu/docs/pages/reference/unix_modes.html

https://www.techonthenet.com/unix/basic/ls.php
https://cs.hofstra.edu/docs/pages/reference/unix_modes.html

Mapping Read-Only Files

 using memcpy() to read from the mapped memory is still
possible

 cannot write to the read-only memory due to access protection
on the memory

 however, OS, run in a privileged mode, can still write to the
read-only memory

 in Linux, if a file is mapped using MAP_PRIVATE, OS will allow us
to write to the mapped memory via a different method using
write() system call

 it is a safe operation because write is only conducted on our own
private copy of the memory, not affecting others

Mapping Read-Only Files: Code

Line ①: map /zzz into read-only memory. we
cannot directly write this to memory, but it can
be done using the proc file system.

Line ②: using the proc file system, a process can
use read(),write() and lseek() to access data from
its memory.

Line ③: lseek() system call moves the file
pointer to the 5th byte from the beginning of the
mapped memory.

proc file system: a special filesystem in Unix-like OS that
presents information about process and other system info. in a
hierarchical file-like structure, providing a convenient and
standardized method for dynamically accessing process data.

/proc/[pid]/mem
• this file can be used to access the pages

of a process's memory through open(),
read(), and lseek().

reference:
https://man7.org/linux/man-pages/man5/proc.5.htmllseek(int fd, off_t offset, int whence)

• lseek() repositions the file offset of the open file description associated with the
file descriptor fd to the argument offset according to the directive whence

• SEEK_SET: the file offset is set to offset bytes

https://man7.org/linux/man-pages/man5/proc.5.html

Mapping Read-Only Files: Code

Line ④: write() system call writes a string to the
memory.
• it triggers copy on write (MAP_PRIVATE), i.e.,

writing is only possible on a private copy of the
mapped memory.

Line ⑤: tell the kernel that private copy is no
longer needed.
• the kernel will point our page table back to the

original mapped memory.
• hence, the changes made to the private file is

discarded.

• memory is modified as we can see the
changed content.

• but the change is only in the copy of the
mapped memory; it does not change the
underlying file.

write(int fd, const void *buf, size_t count);
• writes up to count bytes from the buffer starting at buf to

the file referred to by the file descriptor fd.

Dirty-COW Vulnerability

 for Copy-On-Write, three important steps are performed:
 (a) make a copy of the mapped memory
 (b) update the page table, so the virtual memory points to newly

created physical memory
 (c) write to the memory
 the above steps are not atomic in nature:

 they can be interrupted by other threads which creates a
potential race condition leading to Dirty Cow vulnerability

Dirty-COW Vulnerability

• the problem occurs between Step B and Step C
• Step B changes the page table of the process (the virtual memory points to the physical

memory marked by ②)
• if nothing happens afterwards, Step C will be performed (write() will write to the private

copy of the mapped memory)
• what if something else happens between Step B and Step C? What if the page entries for the

virtual memory got changed in the between?
• madvise() with MADV_DONTNEED: ask kernel to discard the private copy of the

mapped memory (marked by ②)
• the page table can point back to the original mapped memory (marked by ①)

Dirty-COW Vulnerability

 if madvise() is executed between Steps B and C: dangerous race
condition

 Step B makes the virtual memory point to ②.
 madvise() will change it back to ① (negating Step B)
 Step C will modify the physical memory marked by ①, instead of the

private copy.
 changes in the memory marked by ① will be carried through to the

underlying file, causing a read-only file to be modified.
 why doesn’t the protection (preventing write()) on mapped memory work?

 the memory is marked as copy-on-write, so it should not be writable by the
process

 the protection does work; but only at the beginning
 when write() system call starts, it checks for the protection of the mapped

memory.
 when it sees that is a COW memory, it triggers A,B,C without a double check.

 before Step C is performed, no need for another check
 precondition assumed by Step C can be invalidated by madvise()

Exploiting Dirty COW
vulnerability

 basic idea of exploiting the Dirty COW
vulnerability: need to run two threads

 thread 1: write to the mapped memory
using write()

 thread 2: discard the private copy of the
mapped memory using madvise()

 if these two threads follow the intended
order, there will be no problem.

 Step A, B, C, madvise(), Step A, B, C,
madvise(), …

 if madvise() gets in between Step B and
Step C, an undesirable situation might
occur

 standard race condition vulnerability: two
processes or threads race each other to
influence the output

madvise()

madvise()

Exploiting Dirty COW vulnerability

selecting /etc/passwd as target file: the file is world-readable, but non-root users
cannot modify it.
• the file contains the user account info., one record for each user

the third field denotes the User-ID of the user (for Root, it is 0).
• if we can change the third field of our own record (user testcow) into 0, we can turn

ourselves into root.

• user ID;
• change it to 0000 using the Dirty COW vulnerability

• turn it into root (any user with user ID 0 is treated as root by system)

Attack: Main Thread

Set Up Memory Mapping and Threads

• open the /etc/passwd file in read-only
mode

• map etc/passwd file into memory

• since we only have read permission on
the /etc/passwd file, we can only map it
to the read-only memory

• our goal is to write to the mapped
memory, not to its copy

• to do that, we create two additional
threads, run them in parallel, and hit the
condition needed for exploiting the
Dirty COW vulnerability

Attack: Main Thread

strstr(): find where the record for the
testcow account is from the mapped
memory

start two threads
• write thread
• madvise thread

Attack: Two Threads

the write thread: replaces the string
“testcow:x:1001” in the memory with
“testcow:x:0000”
• since the mapped memory is of

COW type, this thread alone will
only be able to modify the contents
in the private copy of the mapped
memory, which will not cause any
change to the underlying
/etc/passwd file.

the madvise thread: discards the private
copy of the mapped memory so the
page table points back to the original
mapped memory.

The write Thread:

The madvise Thread:

Attack Result

• if the write() and the madvise() system
calls are invoked alternatively (one if
invoked only after the other is finished),
the write operation will always be
performed on the private copy, and we will
never be able to modify the target file.

• the only way for the attack to succeed is
to perform madvise() system call between
Step B and Step C in side the write()
system call.

• we cannot always achieve that, so we need
to try many times. (as long as the
probability is not extremely low, we will
have a chance)

• this is why in the threads, we run
the two system calls in an infinite
loop

run the attack program for just a few seconds, and then press Ctrl-C to stop the program.

	Dirty COW
	Introduction
	Memory Mapping �using mmap()
	Memory Mapping using mmap()
	Memory Mapping using mmap()
	Memory Mapping �using mmap()
	MAP_SHARED �and MAP_PRIVATE
	MAP_SHARED and MAP_PRIVATE
	MAP_SHARED and MAP_PRIVATE
	Copy On Write (COW)
	Mapping Read-Only Files: Create a File First
	Mapping Read-Only Files
	Mapping Read-Only Files: Code
	Mapping Read-Only Files: Code
	Dirty-COW Vulnerability
	Dirty-COW Vulnerability
	Dirty-COW Vulnerability
	Exploiting Dirty COW �vulnerability
	Exploiting Dirty COW vulnerability
	Attack: Main Thread
	Attack: Main Thread
	Attack: Two Threads
	Attack Result

