
Format String Vulnerability

Lecture 8

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Introduction

 printf(): print out a string according to a format
int printf(const char *format, …);

 1st arg: format string (defines how string should be formatted)
 format string uses placeholders marked by % character

 replacing placeholder with data during the printing
 format strings in other functions:

 sprintf(), fprintf(), and scanf()
 user can provide the entire or part of the contents in a

format string
 format string vulnerability: if contents are not sanitized,

adversary can get program to run arbitrary code



Introduction

 printf() accepts any number of args
 (unlike other functions taking a fixed # of args)
 ref: https://www.cplusplus.com/reference/cstdio/printf/

 writes the string pointed by format to the standard output (stdout)
 if format includes format specifiers (subsequences beginning with %),

the additional arguments following format are formatted and inserted
in the resulting string replacing their respective specifiers

 e.g., #include <stdio.h>
void main() {

int i = 1, j = 2, k = 3;
printf(“hello world \n”);
printf(“print 1 number: %d\n”, i);
printf(“print 2 numbers: %d, %d\n”, i, j);
printf(“print 3 numbers: %d, %d, %d\n”, i, j, k);

}

https://www.cplusplus.com/reference/cstdio/printf/


Introduction

 printf() accepts any # of args
 how can printf() achieve that?

 if a function requiring three args, but two args are provided,
no error?

 compiler never complain about printf(), regardless of how
many args are provided

 one concrete arg, format
 3 dots (…)

 indicating zero or more optional args



How to Access Optional Args

 when a function is defined with a fixed # of arguments
 each of its arguments is represented by a variable
 access arguments using their names

 optional arguments do not have names. how printf()
access arguments?

 in C, most functions with a variable # of args access optional
arguments using the stdarg macros defined in the stdarg.h
header file

 ref: https://www.tutorialspoint.com/c_standard_library/stdarg_h.htm

a macro is a fragment of code that is given a name.

https://www.tutorialspoint.com/c_standard_library/stdarg_h.htm


stdarg.h

 stdarg.h header defines a variable type va_list and three
macros which can be used to get the args in a function when
the # of args are not known (variable # of args).

 va_list
 a type suitable for holding info. needed by three macros va_start(),

va_arg(), and va_end()
 va_start()

 initializes ap variable to be used with the va_arg and va_end
macros

 the last_arg is the last known fixed argument being passed to the
function i.e. the argument before the ellipsis



stdarg.h

 stdarg.h header defines a variable type va_list and three
macros which can be used to get the args in a function when
the # of args are not known (variable # of args).

 va_arg()

 retrieves the next argument in the parameter list of the function
with type type

 va_end()

 allows a function with variable arguments which used the va_start
macro to return

 if va_end is not called before returning from the function, the
result is undefined



Access Optional Arguments

• va_list pointer (line 1) accesses the
optional arguments.

• va_start() macro (line 2) calculates the
initial position of va_list based on the
second argument Narg (last argument
before the optional arguments begin)

a list of unnamed arguments whose number and 
types are not known to the called function.

a type to hold information 
about variable arguments

end using variable argument list

retrieve next argument

• void va_start (va_list ap, paramN)
• initializes ap to retrieve the

additional arguments after
parameter paramN.

• type va_arg (va_list ap, type)
• retrieve the value of the current

argument in the variable arguments
list identified by ap.

• advance to the next argument in
the the variable arguments list
identified by ap.



Access Optional Arguments

• when myprint() is invoked (line  and )
• all arguments are pushed into the stack
• va_list is used to access the optional args

• va_start() (line ) calculates the initial position 
of va_list based on the Narg

• to access the optional args pointed by va_list, we 
need to use va_arg()

• return the value pointed by the va_list
pointers

• advances the pointer to where the next 
optional arg is stored 

• finish up by calling 

stack layout for myprint(2, 2, 3.5, 3, 4.5);

va_list pointer the type of optional 
arg to be accessed



How printf() Access Optional 
Arguments

 printf() also uses the stdarg macros
 Q: how it know the type of arg?
 Q: how it know the end of arg list?
 here, printf() has three optional arguments.

 elements starting with “%” are called format
specifiers.

 printf() scans the format string and prints out
each character until “%” is encountered.

 printf() calls va_arg(), which returns the
optional argument pointed by va_list and
advances it to the next argument.

• when printf() is called
• all arguments are pushed 

into stack
• when scanning and printing

• replace the 1st format 
specifier with the value 
from the first optional arg. 

• the same idea will be 
applied to other args



Missing Optional 
Arguments

• three format specifiers vs. two optional args
• cannot be caught by compiler

• at runtime, detecting mismatches require boundary
marking on the stack

• detecting when it reaches the last optional arg

• printf() uses the # of format
specifiers to determine the # of
optional args.

• what if a programmer makes a
mistake:

the # of optional args ≠ the # of format specifiers • printf() relies on va_arg() to fetch
optional args from stack

• when va_arg() is called
• the value of arg is fetched
• advance to next arg

• va_arg() doesn’t know whether it
has reached the end of optional
args list

• if called again, va_arg()
continues fetching data from
stack (even though the data is
not optional arg)



Format String Vulnerability

 if there is a mismatch in a format string


 print out incorrect information and cause some problems
 does not pose any severe threat

 it might be true if the mismatch comes from programmer
 if a format string comes from malicious users

 the damage can be far worse than what we can expect
 format string vulnerability

• print out some data provided by users, user_input
• what if user_input has format specifiers
• correct way: printf(“%s”, user_input);

the # of optional args ≠ the # of format specifiers



Format String Vulnerability

 if there is a mismatch in a format string


 print out incorrect information and cause some problems
 does not pose any severe threat

 it might be true if the mismatch comes from programmer
 if a format string comes from malicious users

 the damage can be far worse than what we can expect
 format string vulnerability

• print out some user-provided information, along with data
generated from program

• users may place some format specifiers in their input

the # of optional args ≠ the # of format specifiers



Format String Vulnerability

 if there is a mismatch in a format string


 print out incorrect information and cause some problems
 does not pose any severe threat

 it might be true if the mismatch comes from programmer
 if a format string comes from malicious users

 the damage can be far worse than what we can expect
 format string vulnerability

• in these two examples, user’s input
(user_input) becomes part of a format
string.

• what will happen if user_input contains
format specifiers?

the # of optional args ≠ the # of format specifiers



Vulnerable Code

 vulnerable program
 function fmtstr()

 take user input
 print out the input

• char *fgets(char *str, int n, FILE *stream)
• str: this is the pointer to an array of

chars where the string read is stored.
• n: this is the maximum number of

characters to be read (including the
final null-character). usually, the length
of the array passed as str is used.

• stream: this is the pointer to a FILE
object that identifies the stream where
characters are read from.



Exploiting Format String Vulnerability

 format string vulnerability allows attackers to do a wide
variety of damages

 crash a program
 steal secret data from a program
 modify a program’s memory
 get a program to run attacker’s malicious code



Attack 1: 
Crash Program

 printf() does not include any optional argument,
 if we put several format specifiers in the input, we can get printf()

to advance its va_list pointer to the places beyond the printf()
function’s stack frame

 use input: %s%s%s%s%s%s%s%s
 printf() parses the format string

 for each %s, it fetches a value where va_list points to and advances
va_list to the next position

 as we give %s, printf() treats the value as address and fetches data
from that address

 if the value is not a valid address, the program crashes



Attack 2: 
Print Out Data on the Stack

 suppose a variable on the stack contains a secret (constant) and
we need to print it out

 assume that the var variable contains a secret (dynamically
generated)

 use user input: %x.%x.%x.%x.%x.%x.%x.%x
 printf() prints out the integer value pointed by va_list pointer and

advances it by 4 bytes
 the number of %x is decided by the distance between the starting

point of the va_list pointer and the variable
 it can be achieved by trial and error



Countermeasures: Developer

 format string are used by many other functions
 e.g., fprintf(), springf(), snprintf(), vprintf(), vfprintf(), vsprintf(), and

vsnprintf()
 those are C functions; other languages have similar functions that

use format strings
 good program habit: avoid using untrusted user inputs for

format strings in functions like printf, sprintf, fprintf, vprintf, scanf,
vfscanf

 ask users for data input, but not for code



Countermeasures: Compiler

 compilers can detect potential format string vulnerabilities
• use two compilers to compile 

the program: gcc and clang
• we can see that there is a 

mismatch in the format string 
(line )

• none of them report line 

• with default settings, both
compilers gave warning for
the first printf()

• no warning was given out
for the second one



Countermeasures: Compiler

 compilers can detect potential format string vulnerabilities
• use two compilers to compile 

the program: gcc and clang
• we can see that there is a 

mismatch in the format string 
(line )

• if we attach –Wformat=2
option in compiler
command, both of them
warm the developer

• format string
vulnerability


	Format String Vulnerability
	Introduction
	Introduction
	Introduction
	How to Access Optional Args
	stdarg.h
	stdarg.h
	Access Optional Arguments
	Access Optional Arguments
	How printf() Access Optional Arguments
	Missing Optional �Arguments
	Format String Vulnerability
	Format String Vulnerability
	Format String Vulnerability
	Vulnerable Code
	Exploiting Format String Vulnerability
	Attack 1: �Crash Program
	Attack 2: �Print Out Data on the Stack
	Countermeasures: Developer
	Countermeasures: Compiler
	Countermeasures: Compiler

