
Web Security

Lecture 9

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Introduction

 in real-world web app., data are stored in database
 web app.: save data to or get data from a database

 construct SQL statement
 send SQL statement to the database

 execute SQL statement
 return the results back to web app.

 SQL statement usually contains user-provide data
 what if a SQL statement is not constructed properly?

 inject code into SQL statement
 cause database to execute the code
 SQL injection vulnerability

A Brief Tutorial of SQL

 log in to MySQL:
 we will use MySQL database, which is an open-source relational

database management system
 we can log in using the following command

 create a Database:
 inside MySQL, we can create multiple databases. “SHOW DATABSES”

command can be used to list existing databases
 we will create a new database called dbtest

login name password

Note:
• no space between –u and login name
• no space between –p and password

mysql prompt: indicating login successfully

SQL commands are not case sensitive
• using upper-case to separate from

non-commands in lower-case

create database command

SQL Tutorial: Create a Table

 a relational database organizes its data using tables
 database has multiple tables

 create a table called employee with seven attributes (i.e., columns)
for the database “dbtest”

select database to use

display the structure of table ‘employee’

define the structure of table ‘employee’
• table columns are defined inside parentheses

• each column contains
• name, followed by type
• number: maximum length
• constraints (i.e., NOT NULL)

SQL Tutorial: Insert a Row

 use the ‘INSERT INTO’ statement to insert a new record into a
table:

 here, we insert a record into the “employee” table.
 we do not specify a value of the ID column, as it will be

automatically set by the database.

SQL Tutorial: Insert a Row

 the ‘SELECT’ statement is the most common operation on
databases

 retrieves information from a database

asks the database for all its
records, including all the columns

asks the database only for
Name, EID and Salary columns

all records

SQL Tutorial: WHERE Clause

 it is uncommon for a SQL query to retrieve all records in a
database

 ‘WHERE’ clause is used to set conditions for several types of
SQL statements including ‘SELECT’, ‘UPDATE’, ‘DELETE’, etc.

 the above SQL statement only affects the rows for which the
predicate in the ‘WHERE’ clause is TRUE

 row for which predicate evaluates to FALSE or Unknown are
not affected

 the predicate is a logical expression
 multiple predicates can be combined using keywords AND and

OR

SQL Tutorial: WHERE Clause

 first query: return a record that has EID5001 in the EID field
 second query: return the records that satisfy either EID =

‘EID5001’ or Name = ‘David’

SQL Tutorial: WHERE Clause

 if the condition is always True, then all the rows are affected by
the SQL statement

 this 1=1 predicate looks quite useless in real queries
 useful in SQL Injection attacks

SQL Tutorial: UPDATE Statement

 use the UPDATE Statement to modify an existing record
multiple columns separated by comma

SQL Tutorial: Comments

 MySQL supports three comment styles
 text from the # character to the end of line is treated as a

comment
 text from the --_ to the end of line is treated as a comment

 this style requires the second dash to be followed by at least
one whitespace or control character

 similar to C language, text between /* and */ is treated as a
comment

 this style allows comment to be inserted into the middle of
SQL statement; commend can span multiple lines

space

Interacting with Database in Web
Application

 a typical web application consists of three major components:

 web browser
 get content; present content; interact with user; get user input
 communicate with web app. server using HTTP

 web app. server
 generate and deliver content to browser; rely on independent

database server for data management
 interact with database using SQL

 database

Interacting with Database in Web
Application

 a typical web application consists of three major components:

 SQL Injection attacks can cause damage to the database
 users do not directly interact with the database but through a

web server
 web app. server provide a channel for user’s data to reach database
 if this channel is not implemented properly, malicious users can

attack the database

Getting Data from User

 a form where users can type their data
 once the Submit button is clicked, an HTTP request will be sent

out with the data attached

 the HTML source of the above form is given below:

 request generated is:

GET or POST

name of input field

Getting Data from User

 HTTP GET request
 the method field in the HTML code specified the GET type
 in GET requests, parameters are attached after the question mark ?

in the URL

 each parameter has a name=value pair and are separated by “&”
 in the case of HTTPS, the format would be similar but the data will

be encrypted
 once this request reached the target PHP script (getdata.php)

 the parameters inside the HTTP request will be saved to an array
$_GET or $_POST.

 an example shows a PHP script getting data from a GET request

$_GET: an associative array of variables passed to
the current script via the URL parameters

How Web Applications Interact with
Database

 once a user provides his/her EID and password to the serve-
side script getdata.php

 the script sends user’s data (Name, salary, and SSN, along with
correct password) back

 user data are actually stored in database
 getdata.php needs to send a SQL query to database to get data

 three methods for PHP programs to interact with MySQL
 PHP’s MySQL Extension
 PHP’s MySQLi Extension

 a relational database driver used in the PHP scripting language to
provide an interface with MySQL databases

 PHP Data Objects
 defines a lightweight, consistent interface for accessing databases in

PHP

How Web Applications Interact with
Database

 connecting to MySQL Database
 PHP program connects to the database server before conducting

query on database using.
 the code shown below uses new mysqli(…) along with its 4

arguments to create the database connection.

host name
login name

password
database name

How Web Applications Interact with
Database

 constructing a SQL query to fetch user’s data
 construct the query string
 use mysqli::query() to send it to the database for execution
 the channel between user and database creates a new attack

surface for the database

performs a query on the database
fetch the next row of a result set
as an associative array

frees the memory associated with a result

Launching SQL Injection Attacks

 user input will become part of the SQL statement
 is it possible for a user to change the meaning of the SQL

statement?
 example: the intention of the web app developer by the

following is for user to provide some data for the blank areas

 what if user inputs a random string in the password entry and
types “EID5002’#” in the eid entry.

 the SQL statement will become the following

everything from # sign to the end of line is considered as comment

Launching SQL Injection Attacks

 the SQL statement will be equivalent to the following:

 return the name, salary and SSN of the employee whose EID is
EID5002 even though the user doesn’t know the employee’s
password.

 let’s see if a user can get all the records from the database
 assuming that we don’t know all the EID’s in the database
 create a predicate for ‘WHERE’ clause so that it is true for all

records

always true

Modify Database

• if the statement is UPDATE or INSERT INTO,
we will have chance to change the database

• consider the form created for changing
passwords.

• asks users to fill in three pieces of
information: EID, old password and new
password

• when Submit button is clicked, an HTTP
POST request will be sent to the server-
side script changepasswd.php, which uses
an UPDATE statement to change the
user’s password

Modify Database

 assume that Alice (EID5000) is not satisfied with the salary she gets
 she would like to increase her own salary using the SQL injection

vulnerability
 she would type her own EID and old password
 the following will be typed into the “New Password” box :

 by typing the above string in “New Password” box, we get the UPDATE
statement to set one more attribute for us, the salary attribute.

 the SQL statement will now look as follows.

 what if Alice doesn’t like Bob and would like to reduce Bob’s salary to
0, but she only knows Bob’s EID (eid5001), not his password.

 how can she execute the attack?

Countermeasures:
Filtering and Encoding Data

 before mixing user-provided data with code
 inspect the data
 filter out any character that may be interpreted as code

 special characters are commonly used in SQL Injection attacks.
 to get rid of them or encode them.

 encoding a special character tells parser to treat the encoded
character as data and not as code.

 example
 PHP’s mysqli extension has a built-in method

mysqli::real_escape_string()
 encode the characters that have special meanings in SQL.

prepends backslashes to
the special characters

Countermeasures:
Prepared Statement

 best way to prevent SQL injection attack: separate code from
data

 data can never become code
 for SQL statement: sending code and data in separate channels

to database server
 database parser knows not to retrieve any code from the data

channel
 SQL prepared statement

 optimization feature: provides an improved performance if the
same SQL statement needs to be executed repeatedly

 send SQL statement template to the database with certain values left
unspecified

 database parses, compiles, and stores the result without executing it
 at later time, we bind values to parameters, and ask database to

execute

Countermeasures:
Prepared Statement

using prepared statements: separate code and data

send code

send data

start execution

the vulnerable version: code
and data are mixed together.

	Web Security
	Introduction
	A Brief Tutorial of SQL
	SQL Tutorial: Create a Table
	SQL Tutorial: Insert a Row
	SQL Tutorial: Insert a Row
	SQL Tutorial: WHERE Clause
	SQL Tutorial: WHERE Clause
	SQL Tutorial: WHERE Clause
	SQL Tutorial: UPDATE Statement
	SQL Tutorial: Comments
	Interacting with Database in Web Application
	Interacting with Database in Web Application
	Getting Data from User
	Getting Data from User
	How Web Applications Interact with Database
	How Web Applications Interact with Database
	How Web Applications Interact with Database
	Launching SQL Injection Attacks
	Launching SQL Injection Attacks
	Modify Database
	Modify Database
	Countermeasures: �Filtering and Encoding Data
	Countermeasures: �Prepared Statement
	Countermeasures: �Prepared Statement

