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Introduction

 in real-world web app., data are stored in database
 web app.: save data to or get data from a database

 construct SQL statement
 send SQL statement to the database

 execute SQL statement
 return the results back to web app.

 SQL statement usually contains user-provide data
 what if a SQL statement is not constructed properly?

 inject code into SQL statement
 cause database to execute the code
 SQL injection vulnerability



A Brief  Tutorial of SQL

 log in to MySQL:
 we will use MySQL database, which is an open-source relational

database management system
 we can log in using the following command

 create a Database:
 inside MySQL, we can create multiple databases. “SHOW DATABSES”

command can be used to list existing databases
 we will create a new database called dbtest

login name password

Note:
• no space between –u and login name
• no space between –p and password

mysql prompt: indicating login successfully

SQL commands are not case sensitive
• using upper-case to separate from 

non-commands in lower-case

create database command



SQL Tutorial: Create a Table

 a relational database organizes its data using tables
 database has multiple tables

 create a table called employee with seven attributes (i.e., columns)
for the database “dbtest”

select database to use

display the structure of table ‘employee’

define the structure of table ‘employee’
• table columns are defined inside parentheses

• each column contains 
• name, followed by type
• number: maximum length
• constraints (i.e., NOT NULL)



SQL Tutorial: Insert a Row

 use the ‘INSERT INTO’ statement to insert a new record into a
table:

 here, we insert a record into the “employee” table.
 we do not specify a value of the ID column, as it will be

automatically set by the database.



SQL Tutorial: Insert a Row

 the ‘SELECT’ statement is the most common operation on
databases

 retrieves information from a database

asks the database for all its 
records, including all the columns

asks the database only for 
Name, EID and Salary columns

all records



SQL Tutorial: WHERE Clause

 it is uncommon for a SQL query to retrieve all records in a
database

 ‘WHERE’ clause is used to set conditions for several types of
SQL statements including ‘SELECT’, ‘UPDATE’, ‘DELETE’, etc.

 the above SQL statement only affects the rows for which the
predicate in the ‘WHERE’ clause is TRUE

 row for which predicate evaluates to FALSE or Unknown are
not affected

 the predicate is a logical expression
 multiple predicates can be combined using keywords AND and

OR



SQL Tutorial: WHERE Clause

 first query: return a record that has EID5001 in the EID field
 second query: return the records that satisfy either EID =

‘EID5001’ or Name = ‘David’



SQL Tutorial: WHERE Clause

 if the condition is always True, then all the rows are affected by
the SQL statement

 this 1=1 predicate looks quite useless in real queries
 useful in SQL Injection attacks



SQL Tutorial: UPDATE Statement

 use the UPDATE Statement to modify an existing record
multiple columns separated by comma



SQL Tutorial: Comments

 MySQL supports three comment styles
 text from the # character to the end of line is treated as a

comment
 text from the --_ to the end of line is treated as a comment

 this style requires the second dash to be followed by at least
one whitespace or control character

 similar to C language, text between /* and */ is treated as a
comment

 this style allows comment to be inserted into the middle of
SQL statement; commend can span multiple lines

space



Interacting with Database in Web 
Application

 a typical web application consists of three major components:

 web browser
 get content; present content; interact with user; get user input
 communicate with web app. server using HTTP

 web app. server
 generate and deliver content to browser; rely on independent

database server for data management
 interact with database using SQL

 database



Interacting with Database in Web 
Application

 a typical web application consists of three major components:

 SQL Injection attacks can cause damage to the database
 users do not directly interact with the database but through a

web server
 web app. server provide a channel for user’s data to reach database
 if this channel is not implemented properly, malicious users can

attack the database



Getting Data from User

 a form where users can type their data
 once the Submit button is clicked, an HTTP request will be sent

out with the data attached

 the HTML source of the above form is given below:

 request generated is:

GET or POST 

name of input field



Getting Data from User

 HTTP GET request
 the method field in the HTML code specified the GET type
 in GET requests, parameters are attached after the question mark ?

in the URL

 each parameter has a name=value pair and are separated by “&”
 in the case of HTTPS, the format would be similar but the data will

be encrypted
 once this request reached the target PHP script (getdata.php)

 the parameters inside the HTTP request will be saved to an array
$_GET or $_POST.

 an example shows a PHP script getting data from a GET request

$_GET: an associative array of variables passed to 
the current script via the URL parameters



How Web Applications Interact with 
Database

 once a user provides his/her EID and password to the serve-
side script getdata.php

 the script sends user’s data (Name, salary, and SSN, along with
correct password) back

 user data are actually stored in database
 getdata.php needs to send a SQL query to database to get data

 three methods for PHP programs to interact with MySQL
 PHP’s MySQL Extension
 PHP’s MySQLi Extension

 a relational database driver used in the PHP scripting language to
provide an interface with MySQL databases

 PHP Data Objects
 defines a lightweight, consistent interface for accessing databases in

PHP



How Web Applications Interact with 
Database

 connecting to MySQL Database
 PHP program connects to the database server before conducting

query on database using.
 the code shown below uses new mysqli(…) along with its 4

arguments to create the database connection.

host name
login name

password
database name



How Web Applications Interact with 
Database

 constructing a SQL query to fetch user’s data
 construct the query string
 use mysqli::query() to send it to the database for execution
 the channel between user and database creates a new attack

surface for the database

performs a query on the database
fetch the next row of a result set 
as an associative array

frees the memory associated with a result



Launching SQL Injection Attacks

 user input will become part of the SQL statement
 is it possible for a user to change the meaning of the SQL

statement?
 example: the intention of the web app developer by the

following is for user to provide some data for the blank areas

 what if user inputs a random string in the password entry and
types “EID5002’#” in the eid entry.

 the SQL statement will become the following

everything from # sign to the end of line is considered as comment 



Launching SQL Injection Attacks

 the SQL statement will be equivalent to the following:

 return the name, salary and SSN of the employee whose EID is
EID5002 even though the user doesn’t know the employee’s
password.

 let’s see if a user can get all the records from the database
 assuming that we don’t know all the EID’s in the database
 create a predicate for ‘WHERE’ clause so that it is true for all

records

always true



Modify Database

• if the statement is UPDATE or INSERT INTO,
we will have chance to change the database

• consider the form created for changing
passwords.

• asks users to fill in three pieces of
information: EID, old password and new
password

• when Submit button is clicked, an HTTP
POST request will be sent to the server-
side script changepasswd.php, which uses
an UPDATE statement to change the
user’s password



Modify Database

 assume that Alice (EID5000) is not satisfied with the salary she gets
 she would like to increase her own salary using the SQL injection

vulnerability
 she would type her own EID and old password
 the following will be typed into the “New Password” box :

 by typing the above string in “New Password” box, we get the UPDATE
statement to set one more attribute for us, the salary attribute.

 the SQL statement will now look as follows.

 what if Alice doesn’t like Bob and would like to reduce Bob’s salary to
0, but she only knows Bob’s EID (eid5001), not his password.

 how can she execute the attack?



Countermeasures: 
Filtering and Encoding Data

 before mixing user-provided data with code
 inspect the data
 filter out any character that may be interpreted as code

 special characters are commonly used in SQL Injection attacks.
 to get rid of them or encode them.

 encoding a special character tells parser to treat the encoded
character as data and not as code.

 example
 PHP’s mysqli extension has a built-in method

mysqli::real_escape_string()
 encode the characters that have special meanings in SQL.

prepends backslashes to
the special characters



Countermeasures: 
Prepared Statement

 best way to prevent SQL injection attack: separate code from
data

 data can never become code
 for SQL statement: sending code and data in separate channels

to database server
 database parser knows not to retrieve any code from the data

channel
 SQL prepared statement

 optimization feature: provides an improved performance if the
same SQL statement needs to be executed repeatedly

 send SQL statement template to the database with certain values left
unspecified

 database parses, compiles, and stores the result without executing it
 at later time, we bind values to parameters, and ask database to

execute



Countermeasures: 
Prepared Statement

using prepared statements: separate code and data

send code

send data

start execution

the vulnerable version: code 
and data are mixed together.
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