
Web Security

Lecture 9

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Introduction

 in real-world web app., data are stored in database
 web app.: save data to or get data from a database

 construct SQL statement
 send SQL statement to the database

 execute SQL statement
 return the results back to web app.

 SQL statement usually contains user-provide data
 what if a SQL statement is not constructed properly?

 inject code into SQL statement
 cause database to execute the code
 SQL injection vulnerability

A Brief Tutorial of SQL

 log in to MySQL:
 we will use MySQL database, which is an open-source relational

database management system
 we can log in using the following command

 create a Database:
 inside MySQL, we can create multiple databases. “SHOW DATABSES”

command can be used to list existing databases
 we will create a new database called dbtest

login name password

Note:
• no space between –u and login name
• no space between –p and password

mysql prompt: indicating login successfully

SQL commands are not case sensitive
• using upper-case to separate from

non-commands in lower-case

create database command

SQL Tutorial: Create a Table

 a relational database organizes its data using tables
 database has multiple tables

 create a table called employee with seven attributes (i.e., columns)
for the database “dbtest”

select database to use

display the structure of table ‘employee’

define the structure of table ‘employee’
• table columns are defined inside parentheses

• each column contains
• name, followed by type
• number: maximum length
• constraints (i.e., NOT NULL)

SQL Tutorial: Insert a Row

 use the ‘INSERT INTO’ statement to insert a new record into a
table:

 here, we insert a record into the “employee” table.
 we do not specify a value of the ID column, as it will be

automatically set by the database.

SQL Tutorial: Insert a Row

 the ‘SELECT’ statement is the most common operation on
databases

 retrieves information from a database

asks the database for all its
records, including all the columns

asks the database only for
Name, EID and Salary columns

all records

SQL Tutorial: WHERE Clause

 it is uncommon for a SQL query to retrieve all records in a
database

 ‘WHERE’ clause is used to set conditions for several types of
SQL statements including ‘SELECT’, ‘UPDATE’, ‘DELETE’, etc.

 the above SQL statement only affects the rows for which the
predicate in the ‘WHERE’ clause is TRUE

 row for which predicate evaluates to FALSE or Unknown are
not affected

 the predicate is a logical expression
 multiple predicates can be combined using keywords AND and

OR

SQL Tutorial: WHERE Clause

 first query: return a record that has EID5001 in the EID field
 second query: return the records that satisfy either EID =

‘EID5001’ or Name = ‘David’

SQL Tutorial: WHERE Clause

 if the condition is always True, then all the rows are affected by
the SQL statement

 this 1=1 predicate looks quite useless in real queries
 useful in SQL Injection attacks

SQL Tutorial: UPDATE Statement

 use the UPDATE Statement to modify an existing record
multiple columns separated by comma

SQL Tutorial: Comments

 MySQL supports three comment styles
 text from the # character to the end of line is treated as a

comment
 text from the --_ to the end of line is treated as a comment

 this style requires the second dash to be followed by at least
one whitespace or control character

 similar to C language, text between /* and */ is treated as a
comment

 this style allows comment to be inserted into the middle of
SQL statement; commend can span multiple lines

space

Interacting with Database in Web
Application

 a typical web application consists of three major components:

 web browser
 get content; present content; interact with user; get user input
 communicate with web app. server using HTTP

 web app. server
 generate and deliver content to browser; rely on independent

database server for data management
 interact with database using SQL

 database

Interacting with Database in Web
Application

 a typical web application consists of three major components:

 SQL Injection attacks can cause damage to the database
 users do not directly interact with the database but through a

web server
 web app. server provide a channel for user’s data to reach database
 if this channel is not implemented properly, malicious users can

attack the database

Getting Data from User

 a form where users can type their data
 once the Submit button is clicked, an HTTP request will be sent

out with the data attached

 the HTML source of the above form is given below:

 request generated is:

GET or POST

name of input field

Getting Data from User

 HTTP GET request
 the method field in the HTML code specified the GET type
 in GET requests, parameters are attached after the question mark ?

in the URL

 each parameter has a name=value pair and are separated by “&”
 in the case of HTTPS, the format would be similar but the data will

be encrypted
 once this request reached the target PHP script (getdata.php)

 the parameters inside the HTTP request will be saved to an array
$_GET or $_POST.

 an example shows a PHP script getting data from a GET request

$_GET: an associative array of variables passed to
the current script via the URL parameters

How Web Applications Interact with
Database

 once a user provides his/her EID and password to the serve-
side script getdata.php

 the script sends user’s data (Name, salary, and SSN, along with
correct password) back

 user data are actually stored in database
 getdata.php needs to send a SQL query to database to get data

 three methods for PHP programs to interact with MySQL
 PHP’s MySQL Extension
 PHP’s MySQLi Extension

 a relational database driver used in the PHP scripting language to
provide an interface with MySQL databases

 PHP Data Objects
 defines a lightweight, consistent interface for accessing databases in

PHP

How Web Applications Interact with
Database

 connecting to MySQL Database
 PHP program connects to the database server before conducting

query on database using.
 the code shown below uses new mysqli(…) along with its 4

arguments to create the database connection.

host name
login name

password
database name

How Web Applications Interact with
Database

 constructing a SQL query to fetch user’s data
 construct the query string
 use mysqli::query() to send it to the database for execution
 the channel between user and database creates a new attack

surface for the database

performs a query on the database
fetch the next row of a result set
as an associative array

frees the memory associated with a result

Launching SQL Injection Attacks

 user input will become part of the SQL statement
 is it possible for a user to change the meaning of the SQL

statement?
 example: the intention of the web app developer by the

following is for user to provide some data for the blank areas

 what if user inputs a random string in the password entry and
types “EID5002’#” in the eid entry.

 the SQL statement will become the following

everything from # sign to the end of line is considered as comment

Launching SQL Injection Attacks

 the SQL statement will be equivalent to the following:

 return the name, salary and SSN of the employee whose EID is
EID5002 even though the user doesn’t know the employee’s
password.

 let’s see if a user can get all the records from the database
 assuming that we don’t know all the EID’s in the database
 create a predicate for ‘WHERE’ clause so that it is true for all

records

always true

Modify Database

• if the statement is UPDATE or INSERT INTO,
we will have chance to change the database

• consider the form created for changing
passwords.

• asks users to fill in three pieces of
information: EID, old password and new
password

• when Submit button is clicked, an HTTP
POST request will be sent to the server-
side script changepasswd.php, which uses
an UPDATE statement to change the
user’s password

Modify Database

 assume that Alice (EID5000) is not satisfied with the salary she gets
 she would like to increase her own salary using the SQL injection

vulnerability
 she would type her own EID and old password
 the following will be typed into the “New Password” box :

 by typing the above string in “New Password” box, we get the UPDATE
statement to set one more attribute for us, the salary attribute.

 the SQL statement will now look as follows.

 what if Alice doesn’t like Bob and would like to reduce Bob’s salary to
0, but she only knows Bob’s EID (eid5001), not his password.

 how can she execute the attack?

Countermeasures:
Filtering and Encoding Data

 before mixing user-provided data with code
 inspect the data
 filter out any character that may be interpreted as code

 special characters are commonly used in SQL Injection attacks.
 to get rid of them or encode them.

 encoding a special character tells parser to treat the encoded
character as data and not as code.

 example
 PHP’s mysqli extension has a built-in method

mysqli::real_escape_string()
 encode the characters that have special meanings in SQL.

prepends backslashes to
the special characters

Countermeasures:
Prepared Statement

 best way to prevent SQL injection attack: separate code from
data

 data can never become code
 for SQL statement: sending code and data in separate channels

to database server
 database parser knows not to retrieve any code from the data

channel
 SQL prepared statement

 optimization feature: provides an improved performance if the
same SQL statement needs to be executed repeatedly

 send SQL statement template to the database with certain values left
unspecified

 database parses, compiles, and stores the result without executing it
 at later time, we bind values to parameters, and ask database to

execute

Countermeasures:
Prepared Statement

using prepared statements: separate code and data

send code

send data

start execution

the vulnerable version: code
and data are mixed together.

	Web Security
	Introduction
	A Brief Tutorial of SQL
	SQL Tutorial: Create a Table
	SQL Tutorial: Insert a Row
	SQL Tutorial: Insert a Row
	SQL Tutorial: WHERE Clause
	SQL Tutorial: WHERE Clause
	SQL Tutorial: WHERE Clause
	SQL Tutorial: UPDATE Statement
	SQL Tutorial: Comments
	Interacting with Database in Web Application
	Interacting with Database in Web Application
	Getting Data from User
	Getting Data from User
	How Web Applications Interact with Database
	How Web Applications Interact with Database
	How Web Applications Interact with Database
	Launching SQL Injection Attacks
	Launching SQL Injection Attacks
	Modify Database
	Modify Database
	Countermeasures: �Filtering and Encoding Data
	Countermeasures: �Prepared Statement
	Countermeasures: �Prepared Statement

