
Principles of Successful Testing and Testing
Techniques

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

The Economics of Insecure Software

 Security measurements are about both the specific technical
issues and how these issues affect the economics of software

 Most technical people will at least
 understand the basic issues
 or have a deeper understanding of the vulnerabilities

 Few are able to translate that technical knowledge into monetary
terms and quantify the potential cost of vulnerabilities to the
application owner’s business

 Until this happens, CIOs will not be able to develop an accurate
return on security investment and, subsequently, assign appropriate
budgets for software security

The Economics of Insecure Software

 A survey on the cost of insecure software to the US economy
due to inadequate software testing (NIST, June 2002)

 a better testing infrastructure would save more than a third of
these costs, or about $22 billion a year

 The relationships between economics and security have been
studied by academic researchers

 https://www.cl.cam.ac.uk/~rja14/econsec.html

https://www.cl.cam.ac.uk/%7Erja14/econsec.html

The Economics of Insecure Software

 People are encouraged to measure security throughout the entire
development process

 relate the cost of insecure software to the impact it has on the
business

 consequently develop appropriate business processes and assign
resources to manage the risk

 Remember that measuring and testing web applications is even
more critical than for other software

 web applications are exposed to millions of users through the
Internet

What is Testing?

 During the development life cycle of a web application, many
things need to be tested, but what does testing actually mean?

 The Dictionary describes testing as:
 to put to test or proof
 to undergo a test
 to be assigned a standing or evaluation based on tests

 In software development, testing is a process of comparing the
state of a system or application against a set of criteria

When to Test?

 Most people today don’t test software
until it has already been created and is in
the deployment phase of its life cycle

 very ineffective and cost-prohibitive
practice

 One of the best methods to prevent
security bugs from appearing in
production applications

 improve the Software Development Life
Cycle (SDLC) by including security in each of
its phases

When to Test?

 A generic SDLC model as well as the (estimated) increasing cost of
fixing security bugs in such a model

• Companies should inspect their overall SDLC
to ensure that security is an integral part of
the development process

• SDLCs should include security tests to
ensure security is adequately covered and
controls are effective throughout the
development process

What to Test?

 It can be helpful to think of software development as a
combination of people, process, and technology

 An effective testing program should have components that test:
 People

 to ensure that there is adequate education and awareness
 Process

 to ensure that there are adequate policies and standards and
that people know how to follow these policies

 Technology
 to ensure that the process has been effective in its

implementation

Principles of Testing:
There is No Silver Bullet

 A security scanner or application firewall will provide many
defenses against attack or identify a multitude of problems?

 there is no silver bullet to the problem of insecure software
 application security assessment software is generally immature and

ineffective at in-depth assessments or providing adequate test
coverage

 Remember that security is a process and not a product

Principles of Testing:
Think Strategically, Not Tactically

 The fallacy of the patch-and-penetrate model
 pervasive in information security during the 1990’s

 The patch-and-penetrate model involves fixing a reported bug,
but without proper investigation of the root cause

 The evolution of vulnerabilities in common software used
worldwide has shown the ineffectiveness of this model

Principles of Testing:
Think Strategically, Not Tactically

Window ofVulnerability
• With the reaction time of attacker, the

typical window of vulnerability does not
provide enough time for patch installation

• the time between a vulnerability
being uncovered and an automated
attack against it being developed and
released is decreasing every year

Principles of Testing:
Think Strategically, Not Tactically

 Several incorrect assumptions in the patch-and-penetrate model
 patches interfere with normal operations and might break existing

applications
 all users are aware of newly released patches

 Consequently,
 not all users of a product will apply patches

 either because they think patching may interfere with how the
software works

 or because they lack knowledge about the existence of the
patch

Principles of Testing:
Think Strategically, Not Tactically

 It is essential to build security into the Software Development
Life Cycle (SDLC) to prevent reoccurring security problems
within an application

 Developers can build security into the SDLC by developing
standards, policies, and guidelines that fit and work within the
development methodology

 Threat modeling and other techniques should be used to help
assign appropriate resources to those parts of a system that are
most at risk

Principles of Testing:
Test Early and Test Often

 When a bug is detected early within the SDLC it can be
addressed faster and at a lower cost

 A security bug is no different from a functional or performance-
based bug in this regard

 A key step in making this possible is to educate the development
and QA teams about common security issues and the ways to
detect and prevent them

 Education in security testing also helps developers acquire the
appropriate mindset to test an application from an attacker’s
perspective

 This allows each organization to consider security issues as
part of their existing responsibilities

Principles of Testing:
Understand the Scope of Security

 It is important to know how much security a given project will
require

 The information and assets that are to be protected should be
given a classification that states how they are to be handled (e.g.,
confidential, secret, top secret)

 Discussions should occur with legal council to ensure that any specific
security requirements will be met

 In the USA, requirements might come from federal regulations,
such as the Gramm-Leach-Bliley Act, or from state laws, such as
the California SB-1386

Principles of Testing:
Develop the Right Mindset

 Successfully testing an application for security vulnerabilities
requires thinking “outside of the box.”

 Normal use cases will test the normal behavior of the
application when a user is using it in the manner that is
expected

 Good security testing requires going beyond what is expected
and thinking like an attacker who is trying to break the
application

 Creative thinking can help to determine what unexpected data may
cause an application to fail in an insecure manner

 It can also help find what assumptions made by web developers are
not always true and how they can be subverted

Principles of Testing:
Understand the Subject

 One of the first major initiatives in any good security program
should be to require accurate documentation of the application

 architecture
 data-flow diagrams
 use cases
 etc.

 The technical specification and application documents should
include information that lists not only the desired use cases, but
also any specifically disallowed use case

 Finally, it is good to have at least a basic security infrastructure
that allows the monitoring and trending of attacks against an
organization’s applications and network

Principles of Testing:
Use the Right Tools

 While we have already stated that there is no silver bullet tool,
tools do play a critical role in the overall security program

 There is a range of open source and commercial tools that can
automate many routine security tasks

 These tools can simplify and speed up the security process by
assisting security personnel in their tasks

 However, it is important to understand exactly what these tools
can and cannot do so that they are not oversold or used
incorrectly

Principles of Testing:
Use Source Code When Available

 While black box penetration test results can be impressive and
useful to demonstrate how vulnerabilities are exposed in a
production environment, they are not the most effective or
efficient way to secure an application

 It is difficult for dynamic testing to test the entire code base,
particularly if many nested conditional statements exist

 If the source code for the application is available, it should be
given to the security staff to assist them while performing their
review.

 It is possible to discover vulnerabilities within the application
source that would be missed during a black box engagement

Principles of Testing:
Document the Test Results

 To conclude the testing process, it is important to produce a
formal record of what testing actions were taken, by whom,
when they were performed, and details of the test findings

 It is wise to agree on an acceptable format for the report which is
useful to all concerned parties,

 developers
 project management
 business owners
 IT department
 audit

Principles of Testing:
Document the Test Results

 The report should be clear to the business owner in identifying
where risks exist and sufficient to get their backing for subsequent
mitigation actions

 The report should also be clear to the developer in pin-pointing
the exact function that is affected by the vulnerability and
associated recommendations for resolving issues in a language that
the developer will understand

 The report should also allow another security tester to reproduce
the results

 Writing the report should not be overly burdensome on the
security tester themselves

 Using a security test report template can save time and ensure that
results are documented accurately and consistently, and are in a
format that is suitable for the audience

Testing Techniques

 Testing techniques
 Manual Inspections & Reviews
 Threat Modeling
 Code Review
 Penetration Testing

Testing Techniques:
Manual Inspections & Reviews

 Manual inspections are human reviews that typically test the
security implications of people, policies, and processes

 Manual inspections can also include inspection of technology
decisions such as architectural designs

 They are usually conducted by analyzing documentation or
performing interviews with the designers or system owners

Testing Techniques:
Manual Inspections & Reviews

 While the concept of manual inspections and human reviews is
simple, they can be among the most powerful and effective
techniques available

 By asking someone how something works and why it was
implemented in a specific way, the tester can quickly determine
if any security concerns are likely to be evident

 Manual inspections and reviews are one of the few ways to test
the software development life-cycle process itself and to ensure
that there is an adequate policy or skill set in place

Testing Techniques:
Manual Inspections & Reviews

 As with many things in life, when conducting manual inspections
and reviews, it is recommended that a trust-but-verify model is
adopted.

 Not everything that the tester is shown or told will be accurate

 Manual reviews are particularly good for testing whether people
understand the security process, have been made aware of
policy, and have the appropriate skills to design or implement a
secure application

 Other activities, including manually reviewing the documentation,
secure coding policies, security requirements, and architectural
designs, should all be accomplished using manual inspections

Testing Techniques:
Manual Inspections & Reviews

 Advantages:
 Requires no supporting technology
 Can be applied to a variety of situations
 Flexible
 Promotes teamwork
 Early in the SDLC

 Disadvantages:
 Can be time consuming
 Supporting material not always available
 Requires significant human thought and skill to be effective

Testing Techniques:
Threat Modeling

 Threat modeling has become a popular technique to help
system designers think about the security threats that their
systems and applications might face

 threat modeling can be seen as risk assessment for applications
 it enables the designer to develop mitigation strategies for

potential vulnerabilities and helps them focus their inevitably
limited resources and attention on the parts of the system that
most require it

 it is recommended that all applications have a threat model
developed and documented

 Threat models should be created as early as possible in the
SDLC, and should be revisited as the application evolves and
development progresses

Testing Techniques:
Threat Modeling

 To develop a threat model, it is recommend taking a simple approach
that follows the NIST 800-30 standard for risk assessment.

 This approach involves:
 Decomposing the application – use a process of manual inspection to

understand how the application works, its assets, functionality, and
connectivity.

 Defining and classifying the assets – classify the assets into tangible and
intangible assets and rank them according to business importance.

 Exploring potential vulnerabilities - whether technical, operational, or
management.

 Exploring potential threats – develop a realistic view of potential attack
vectors from an attacker’s perspective, by using threat scenarios or attack
trees.

 Creating mitigation strategies – develop mitigating controls for each of the
threats deemed to be realistic.

Testing Techniques:
Threat Modeling

 The output from a threat model itself can vary but is typically a
collection of lists and diagrams

 The OWASP Code Review Guide outlines an Application Threat
Modeling methodology that can be used as a reference for the
testing applications for potential security flaws in the design of
the application

 There is no right or wrong way to develop threat models and
perform information risk assessments on applications

Testing Techniques:
Threat Modeling

 Advantages:
 Practical attacker’s view of the system
 Flexible
 Early in the SDLC

 Disadvantages:
 Relatively new technique
 Good threat models don’t automatically mean good software

Testing Techniques:
Source Code Review

 Source code review is the process of manually checking the source
code of a web application for security issues.

 As the popular saying goes “if you want to know what’s really going
on, go straight to the source.”

 Many serious security vulnerabilities cannot be detected with any
other form of analysis or testing

 Almost all security experts agree that there is no substitute for
actually looking at the code

 All the information for identifying security problems is there in the
code somewhere

 Unlike testing third party closed software such as operating systems,
when testing web applications (especially if they have been developed
in-house) the source code should be made available for testing
purposes

Testing Techniques:
Source Code Review

 Many unintentional but significant security problems are also
extremely difficult to discover with other forms of analysis or
testing, such as penetration testing, making source code analysis
the technique of choice for technical testing

 With the source code, a tester can accurately determine what is
happening (or is supposed to be happening) and remove the
guess work of black box testing

Testing Techniques:
Source Code Review

 Advantages:
 Completeness and effectiveness
 Accuracy
 Fast (for competent reviewers)

 Disadvantages:
 Requires highly skilled security developers
 Cannot detect run-time errors easily
 The source code actually deployed might differ from the one being

analyzed

Testing Techniques:
Penetration Testing

 Penetration testing has been a common technique used to test
network security for many years

 It is also commonly known as black box testing or ethical hacking
 Penetration testing is essentially the “art” of testing a running

application remotely to find security vulnerabilities, without
knowing the inner workings of the application itself

 Typically, the penetration test team would have access to an
application as if they were users

 The tester acts like an attacker and attempts to find and exploit
vulnerabilities

 In many cases the tester will be given a valid account on the
system

Testing Techniques:
Penetration Testing

 Many people today use web application penetration testing as
their primary security testing technique

 Whilst it certainly has its place in a testing program, we do not
believe it should be considered as the primary or only testing
technique

 Focused penetration testing can be useful in detecting if some
specific vulnerabilities are actually fixed in the source code
deployed on the web site

“If you fail a penetration test you know you have a very bad problem
indeed. If you pass a penetration test you do not know that you don’t
have a very bad problem”. (Gary McGraw)

Testing Techniques:
Penetration Testing

 Advantages:
 Can be fast (and therefore cheap)
 Requires a relatively lower skill-set than source code review
 Tests the code that is actually being exposed

 Disadvantages:
 Too late in the SDLC
 Front impact testing only

Testing Techniques:
The Need for a Balanced Approach

 With so many techniques and approaches to testing the security
of web applications, it can be difficult to understand which
techniques to use and when to use them

 The correct approach is a balanced approach that includes
several techniques, from manual reviews to technical testing

 A balanced approach should cover testing in all phases of the
SDLC

 This approach leverages the most appropriate techniques available
depending on the current SDLC phase

 A balanced approach varies depending on many factors, such as
the maturity of the testing process and corporate culture

Testing Techniques:
The Need for a Balanced Approach

 It is recommended that a balanced testing framework should
look something like the representations

Proportion of Test Effort in SDLC Proportion of Test Effort According to Test Technique

	Principles of Successful Testing and Testing�Techniques
	The Economics of Insecure Software
	The Economics of Insecure Software
	The Economics of Insecure Software
	What is Testing?
	When to Test?
	When to Test?
	What to Test?
	Principles of Testing:�There is No Silver Bullet
	Principles of Testing:�Think Strategically, Not Tactically
	Principles of Testing:�Think Strategically, Not Tactically
	Principles of Testing:�Think Strategically, Not Tactically
	Principles of Testing:�Think Strategically, Not Tactically
	Principles of Testing:�Test Early and Test Often
	Principles of Testing:�Understand the Scope of Security
	Principles of Testing:�Develop the Right Mindset
	Principles of Testing:�Understand the Subject
	Principles of Testing:�Use the Right Tools
	Principles of Testing:�Use Source Code When Available
	Principles of Testing:�Document the Test Results
	Principles of Testing:�Document the Test Results
	Testing Techniques
	Testing Techniques:�Manual Inspections & Reviews
	Testing Techniques:�Manual Inspections & Reviews
	Testing Techniques:�Manual Inspections & Reviews
	Testing Techniques:�Manual Inspections & Reviews
	Testing Techniques:�Threat Modeling
	Testing Techniques:�Threat Modeling
	Testing Techniques:�Threat Modeling
	Testing Techniques:�Threat Modeling
	Testing Techniques:�Source Code Review
	Testing Techniques:�Source Code Review
	Testing Techniques:�Source Code Review
	Testing Techniques:�Penetration Testing
	Testing Techniques:�Penetration Testing
	Testing Techniques:�Penetration Testing
	Testing Techniques:�The Need for a Balanced Approach
	Testing Techniques:�The Need for a Balanced Approach

