
Identity Management Testing

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Test Role Definitions: Summary

 It is common in modern enterprises to define system roles to
manage users and authorization to system resources.

 In most system implementations, it is expected that at least two
roles exist

 Administrators
 representing a role that permits access to privileged and

sensitive functionality and information.
 Regular users

 representing a role that permits access to regular business
functionality and information.

 Well developed roles should align with business processes
which are supported by the application.



Test Role Definitions: WordPress

 https://wordpress.org/support/article/roles-and-capabilities/#roles

https://wordpress.org/support/article/roles-and-capabilities/#roles


Test Role Definitions: Test Objectives

 Validate the system roles defined within the application.
 Sufficiently define and separate each system and business role to

manage appropriate access to system functionality and information.



Test Role Definitions: How to Test

 Either with or without the help of the system developers or
administrators, develop a role versus permission matrix.

 The matrix should enumerate all the roles that can be
provisioned and explore the permissions that are allowed to be
applied to the objects including any constraints.

 If a matrix is provided with the application, it should be
validated by the tester.

 If it doesn’t exist, the tester should generate it and determine
whether the matrix satisfies the desired access policy for the
application.



Test Role Definitions: Example



Test Role Definitions: Example

 http://testfire.net/

 Admin
 Username: admin
 Password: admin

 Regular User
 Username: jsmith
 Password: Demo1234

http://testfire.net/


Test Role Definitions: How to Test

 While the most thorough and accurate approach to completing
this test is to conduct it manually.

 Spidering tools are also useful.
 Log on with each role in turn and spider the application.
 Tool: skipfish (Kali Linux)

 https://www.kali.org/tools/skipfish/

https://www.kali.org/tools/skipfish/


Test User Registration Process: 
Summary

 Some websites offer a user registration process that automates
(or semi-automates) the provisioning of system access to users.

 The identity requirements for access vary from positive
identification to none at all, depending on the security
requirements of the system.

 Many public applications completely automate the registration
and provisioning process because the size of the user base
makes it impossible to manage manually.

 However, many corporate applications will provision users
manually, so this test case may not apply.



Test User Registration Process:  Test 
Objectives

 Verify that the identity requirements for user registration are
aligned with business and security requirements.

 Validate the registration process.



Test User Registration Process: How 
to Test

 Verify that the identity requirements for user registration are
aligned with business and security requirements:

 Can anyone register for access?
 Are registrations vetted by a human prior to provisioning, or are

they automatically granted if the criteria are met?
 Can the same person or identity register multiple times?
 Can users register for different roles or permissions?
 What proof of identity is required for a registration to be

successful?
 Are registered identities verified?

 Validate the registration process:
 Can identity information be easily forged or faked?
 Can the exchange of identity information be manipulated during

registration?



Test User Registration Process: 
Example - WordPress



Test User Registration Process: 
Example - Google



Testing for Account Enumeration and 
Guessable User Account: Summary

 The scope of this test is to verify if it is possible to collect a set of valid
usernames by interacting with the authentication mechanism of the
application.

 This test will be useful for brute force testing, in which the tester verifies if,
given a valid username, it is possible to find the corresponding password.

 Often, web applications reveal when a username exists on system, either
as a consequence of mis-configuration or as a design decision.

 For example, sometimes, when we submit wrong credentials, we receive a
message that states that either the username is present on the system or
the provided password is wrong.

 The information obtained can be used by an attacker to gain a list of users
on system.

 This information can be used to attack the web application, for example,
through a brute force or default username and password attack.



Testing for Account Enumeration and 
Guessable User Account: Summary

 The tester should interact with the authentication mechanism of the
application to understand if sending particular requests causes the
application to answer in different manners.

 This issue exists because the information released from web
application or web server when the user provide a valid username is
different than when they use an invalid one.

 In some cases, a message is received that reveals if the provided
credentials are wrong because an invalid username or an invalid
password was used.

 Sometimes, testers can enumerate the existing users by sending a
username and an empty password.



Testing for Account Enumeration and 
Guessable User Account: How to Test

 Testing forValid user/right password
 Record the server answer when you submit a valid user ID and

valid password.

 Result Expected:
 Using WebScarab, notice the information retrieved from this

successful authentication (HTTP 200 Response, length of the
response).



Testing for Account Enumeration and 
Guessable User Account: How to Test

 Testing for valid user with wrong password
 The tester should try to insert a valid user ID and a wrong

password and record the error message generated by the
application.

 Result Expected:
 The browser should display a message similar to the following one:



Testing for Account Enumeration and 
Guessable User Account: How to Test

 Against any message that reveals the existence of user, for
instance, message similar to

 Using WebScarab, notice the information retrieved from this
unsuccessful authentication attempt.



Testing for Account Enumeration and 
Guessable User Account: How to Test

 Testing for a nonexistent username
 The tester should try to insert an invalid user ID and a wrong

password and record the server answer (the tester should be
confident that the username is not valid in the application).

 Record the error message and the server answer.

 Result Expected:
 If the tester enters a nonexistent user ID, they can receive a

message similar to:



Testing for Account Enumeration and 
Guessable User Account: How to Test

 Generally the application should respond with the same error
message and length to the different incorrect requests.

 If the responses are not the same, the tester should investigate
and find out the key that creates a difference between the two
responses.

 For example:

 The above responses let the client understand that for the first
request they have a valid user name.

 So they can interact with the application requesting a set of
possible user IDs and observing the answer.



Testing for Weak or Unenforced 
Username Policy: Summary

 User account names are often highly structured and valid
account names can easily be guessed

 e.g.
 Joe Bloggs account name is jbloggs
 Fred Nurks account name is fnurks



Testing for Weak or Unenforced 
Username Policy: Test Objectives

 Determine whether a consistent account name structure
renders the application vulnerable to account enumeration.

 Determine whether the application’s error messages permit
account enumeration.



Testing for Weak or Unenforced 
Username Policy: How to Test

 Determine the structure of account names.

 Evaluate the application’s response to valid and invalid account
names.

 Use different responses to valid and invalid account names to
enumerate valid account names.

 Use account name dictionaries to enumerate valid account
names.

 403,355 username of/at US
 https://github.com/duyetdev/bruteforce-database

https://github.com/duyetdev/bruteforce-database

	Identity Management Testing
	Test Role Definitions: Summary
	Test Role Definitions: WordPress
	Test Role Definitions: Test Objectives
	Test Role Definitions: How to Test
	Test Role Definitions: Example
	Test Role Definitions: Example
	Test Role Definitions: How to Test
	Test User Registration Process: Summary
	Test User Registration Process:  Test Objectives
	Test User Registration Process: How to Test
	Test User Registration Process: Example - WordPress
	Test User Registration Process: Example - Google
	Testing for Account Enumeration and Guessable User Account: Summary
	Testing for Account Enumeration and Guessable User Account: Summary
	Testing for Account Enumeration and Guessable User Account: How to Test
	Testing for Account Enumeration and Guessable User Account: How to Test
	Testing for Account Enumeration and Guessable User Account: How to Test
	Testing for Account Enumeration and Guessable User Account: How to Test
	Testing for Account Enumeration and Guessable User Account: How to Test
	Testing for Weak or Unenforced Username Policy: Summary
	Testing for Weak or Unenforced Username Policy: Test Objectives
	Testing for Weak or Unenforced Username Policy: How to Test

