
Identity Management Testing

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Test Role Definitions: Summary

 It is common in modern enterprises to define system roles to
manage users and authorization to system resources.

 In most system implementations, it is expected that at least two
roles exist

 Administrators
 representing a role that permits access to privileged and

sensitive functionality and information.
 Regular users

 representing a role that permits access to regular business
functionality and information.

 Well developed roles should align with business processes
which are supported by the application.



Test Role Definitions: WordPress

 https://wordpress.org/support/article/roles-and-capabilities/#roles

https://wordpress.org/support/article/roles-and-capabilities/#roles


Test Role Definitions: Test Objectives

 Validate the system roles defined within the application.
 Sufficiently define and separate each system and business role to

manage appropriate access to system functionality and information.



Test Role Definitions: How to Test

 Either with or without the help of the system developers or
administrators, develop a role versus permission matrix.

 The matrix should enumerate all the roles that can be
provisioned and explore the permissions that are allowed to be
applied to the objects including any constraints.

 If a matrix is provided with the application, it should be
validated by the tester.

 If it doesn’t exist, the tester should generate it and determine
whether the matrix satisfies the desired access policy for the
application.



Test Role Definitions: Example



Test Role Definitions: Example

 http://testfire.net/

 Admin
 Username: admin
 Password: admin

 Regular User
 Username: jsmith
 Password: Demo1234

http://testfire.net/


Test Role Definitions: How to Test

 While the most thorough and accurate approach to completing
this test is to conduct it manually.

 Spidering tools are also useful.
 Log on with each role in turn and spider the application.
 Tool: skipfish (Kali Linux)

 https://www.kali.org/tools/skipfish/

https://www.kali.org/tools/skipfish/


Test User Registration Process: 
Summary

 Some websites offer a user registration process that automates
(or semi-automates) the provisioning of system access to users.

 The identity requirements for access vary from positive
identification to none at all, depending on the security
requirements of the system.

 Many public applications completely automate the registration
and provisioning process because the size of the user base
makes it impossible to manage manually.

 However, many corporate applications will provision users
manually, so this test case may not apply.



Test User Registration Process:  Test 
Objectives

 Verify that the identity requirements for user registration are
aligned with business and security requirements.

 Validate the registration process.



Test User Registration Process: How 
to Test

 Verify that the identity requirements for user registration are
aligned with business and security requirements:

 Can anyone register for access?
 Are registrations vetted by a human prior to provisioning, or are

they automatically granted if the criteria are met?
 Can the same person or identity register multiple times?
 Can users register for different roles or permissions?
 What proof of identity is required for a registration to be

successful?
 Are registered identities verified?

 Validate the registration process:
 Can identity information be easily forged or faked?
 Can the exchange of identity information be manipulated during

registration?



Test User Registration Process: 
Example - WordPress



Test User Registration Process: 
Example - Google



Testing for Account Enumeration and 
Guessable User Account: Summary

 The scope of this test is to verify if it is possible to collect a set of valid
usernames by interacting with the authentication mechanism of the
application.

 This test will be useful for brute force testing, in which the tester verifies if,
given a valid username, it is possible to find the corresponding password.

 Often, web applications reveal when a username exists on system, either
as a consequence of mis-configuration or as a design decision.

 For example, sometimes, when we submit wrong credentials, we receive a
message that states that either the username is present on the system or
the provided password is wrong.

 The information obtained can be used by an attacker to gain a list of users
on system.

 This information can be used to attack the web application, for example,
through a brute force or default username and password attack.



Testing for Account Enumeration and 
Guessable User Account: Summary

 The tester should interact with the authentication mechanism of the
application to understand if sending particular requests causes the
application to answer in different manners.

 This issue exists because the information released from web
application or web server when the user provide a valid username is
different than when they use an invalid one.

 In some cases, a message is received that reveals if the provided
credentials are wrong because an invalid username or an invalid
password was used.

 Sometimes, testers can enumerate the existing users by sending a
username and an empty password.



Testing for Account Enumeration and 
Guessable User Account: How to Test

 Testing forValid user/right password
 Record the server answer when you submit a valid user ID and

valid password.

 Result Expected:
 Using WebScarab, notice the information retrieved from this

successful authentication (HTTP 200 Response, length of the
response).



Testing for Account Enumeration and 
Guessable User Account: How to Test

 Testing for valid user with wrong password
 The tester should try to insert a valid user ID and a wrong

password and record the error message generated by the
application.

 Result Expected:
 The browser should display a message similar to the following one:



Testing for Account Enumeration and 
Guessable User Account: How to Test

 Against any message that reveals the existence of user, for
instance, message similar to

 Using WebScarab, notice the information retrieved from this
unsuccessful authentication attempt.



Testing for Account Enumeration and 
Guessable User Account: How to Test

 Testing for a nonexistent username
 The tester should try to insert an invalid user ID and a wrong

password and record the server answer (the tester should be
confident that the username is not valid in the application).

 Record the error message and the server answer.

 Result Expected:
 If the tester enters a nonexistent user ID, they can receive a

message similar to:



Testing for Account Enumeration and 
Guessable User Account: How to Test

 Generally the application should respond with the same error
message and length to the different incorrect requests.

 If the responses are not the same, the tester should investigate
and find out the key that creates a difference between the two
responses.

 For example:

 The above responses let the client understand that for the first
request they have a valid user name.

 So they can interact with the application requesting a set of
possible user IDs and observing the answer.



Testing for Weak or Unenforced 
Username Policy: Summary

 User account names are often highly structured and valid
account names can easily be guessed

 e.g.
 Joe Bloggs account name is jbloggs
 Fred Nurks account name is fnurks



Testing for Weak or Unenforced 
Username Policy: Test Objectives

 Determine whether a consistent account name structure
renders the application vulnerable to account enumeration.

 Determine whether the application’s error messages permit
account enumeration.



Testing for Weak or Unenforced 
Username Policy: How to Test

 Determine the structure of account names.

 Evaluate the application’s response to valid and invalid account
names.

 Use different responses to valid and invalid account names to
enumerate valid account names.

 Use account name dictionaries to enumerate valid account
names.

 403,355 username of/at US
 https://github.com/duyetdev/bruteforce-database

https://github.com/duyetdev/bruteforce-database

	Identity Management Testing
	Test Role Definitions: Summary
	Test Role Definitions: WordPress
	Test Role Definitions: Test Objectives
	Test Role Definitions: How to Test
	Test Role Definitions: Example
	Test Role Definitions: Example
	Test Role Definitions: How to Test
	Test User Registration Process: Summary
	Test User Registration Process:  Test Objectives
	Test User Registration Process: How to Test
	Test User Registration Process: Example - WordPress
	Test User Registration Process: Example - Google
	Testing for Account Enumeration and Guessable User Account: Summary
	Testing for Account Enumeration and Guessable User Account: Summary
	Testing for Account Enumeration and Guessable User Account: How to Test
	Testing for Account Enumeration and Guessable User Account: How to Test
	Testing for Account Enumeration and Guessable User Account: How to Test
	Testing for Account Enumeration and Guessable User Account: How to Test
	Testing for Account Enumeration and Guessable User Account: How to Test
	Testing for Weak or Unenforced Username Policy: Summary
	Testing for Weak or Unenforced Username Policy: Test Objectives
	Testing for Weak or Unenforced Username Policy: How to Test

