
Authentication Testing

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Introduction

 Authentication is the act of establishing or confirming
something (or someone) as authentic, that is, that claims made
by or about the thing are true.

 Authenticating an object may mean confirming its provenance,
whereas authenticating a person often consists of verifying
his/her identity.

 Authentication depends upon one or more authentication
factors.

Introduction

 In computer security, authentication is the process of attempting
to verify the digital identity of the sender of a communication.

 A common example of such a process is the log on process.

 Testing the authentication schema means understanding how
the authentication process works and using that information to
circumvent the authentication mechanism.

Testing for Credentials Transported
over an Encrypted Channel: Summary

 Testing for credentials transport means verifying that the user’s
authentication data are transferred via an encrypted channel to avoid
being intercepted by malicious users.

 The analysis focuses simply on trying to understand if the data travels
unencrypted from the web browser to the server, or if the web application
takes the appropriate security measures using a protocol like HTTPS.

 The HTTPS protocol is built on TLS/SSL to encrypt the data that is
transmitted and to ensure that user is being sent towards the desired
site.

 Clearly, the fact that traffic is encrypted does not necessarily mean that
it’s completely safe.

 The security also depends on the encryption algorithm used and the
robustness of the keys that the application is using, but this particular
topic will not be addressed.

Testing for Credentials Transported
over an Encrypted Channel: Summary

 Nowadays, the most common example of this issue is the log in page of a
web application.

 The tester should verify that user’s credentials are transmitted via an
encrypted channel.

 In order to log in to a web site, the user usually has to fill a simple form
that transmits the inserted data to the web application with the POST
method.

 What is less obvious is that this data can be passed using the HTTP
protocol, which transmits the data in a non-secure, clear text form, or
using the HTTPS protocol, which encrypts the data during the
transmission.

 To further complicate things, there is the possibility that the site has the
login page accessible via HTTP (making us believe that the transmission is
insecure), but then it actually sends data via HTTPS.

 This test is done to be sure that an attacker cannot retrieve sensitive
information by simply sniffing the network with a sniffer tool.

Testing for Credentials Transported
over an Encrypted Channel: How to Test

 WebScarab: capture packet headers and to inspect them. You
can use any web proxy that you prefer.

 Configure proxy

 WebScarab: capture packet headers and to inspect them. You
can use any web proxy that you prefer.

 Sending data with POST method through HTTP
 Suppose that the login page presents a form with fields User,

Password, and the Submit button to authenticate and give
access to the application.

 If we look at the headers of our request with WebScarab, we
can get something like this:

Testing for Credentials Transported
over an Encrypted Channel: How to Test

 WebScarab: capture packet headers and to inspect them. You
can use any web proxy that you prefer.

 Sending data with POST method through HTTPS
 Suppose that our web application uses the HTTPS protocol to

encrypt the data we are sending (or at least for transmitting
sensitive data like credentials).

 In this case, when logging on to the web application the header
of our POST request would be similar to the following:

Testing for Credentials Transported
over an Encrypted Channel: How to Test

Testing for Weak Lock Out Mechanism:
Summary

 Account lockout mechanisms are used to mitigate brute force
password guessing attacks.

 Accounts are typically locked after 3 to 5 unsuccessful login
attempts and can only be unlocked

 after a predetermined period of time
 via a self-service unlock mechanism
 or intervention by an administrator

 Account lockout mechanisms require a balance between
protecting accounts from unauthorized access and protecting
users from being denied authorized access.

 Without a strong lockout mechanism, the application may be
susceptible to brute force attacks.

 After a successful brute force attack, a malicious user could have
access to:

 Confidential information or data:
 Confidential documents, users’ profile data, financial information, bank

details, users’ relationships, etc.
 Administration panels:

 Webmasters to manage (modify, delete, add) web application content,
manage user provisioning, assign different privileges to the users, etc.

 Opportunities for further attacks:
 Authenticated sections of a web application could contain vulnerabilities

that are not present in the public section of the web application and could
contain advanced functionality that is not available to public users.

Testing for Weak Lock Out Mechanism:
Summary

Testing for Weak lock out mechanism:
Test Objectives

 Evaluate the account lockout mechanism’s ability to mitigate
brute force password guessing.

 Evaluate the unlock mechanism’s resistance to unauthorized
account unlocking.

Testing for Weak lock out mechanism:
How to Test

 Typically, to test the strength of lockout mechanisms, you will
need access to an account that you are willing or can afford to
lock.

 If you have only one account with which you can log on to the
web application, perform this test at the end of you test plan to
avoid that you cannot continue your testing due to a locked
account.

 To evaluate the account lockout mechanism’s ability to mitigate
brute force password guessing, attempt an invalid log in by using
the incorrect password a number of times, before using the
correct password to verify that the account was locked out.

Testing for Weak lock out mechanism:
Example

 Attempt to log in with an incorrect password 3 times.
 Successfully log in with the correct password, thereby showing that

the lockout mechanism doesn’t trigger after 3 incorrect
authentication attempts.

 Attempt to log in with an incorrect password 4 times.
 Successfully log in with the correct password, thereby showing that

the lockout mechanism doesn’t trigger after 4 incorrect
authentication attempts.

 Attempt to log in with an incorrect password 5 times.
 Attempt to log in with the correct password. The application

returns “Your account is locked out.”, thereby confirming that the
account is locked out after 5 incorrect authentication attempts.

Testing for Weak lock out mechanism:
Example

 Attempt to log in with the correct password 5 minutes later.
The application returns “Your account is locked out.”, thereby
showing that the lockout mechanism does not automatically
unlock after 5 minutes.

 Attempt to log in with the correct password 10 minutes later.
The application returns “Your account is locked out.”, thereby
showing that the lockout mechanism does not automatically
unlock after 10 minutes.

 Successfully log in with the correct password 15 minutes later,
thereby showing that the lockout mechanism automatically
unlocks after a 10 to 15 minute period.

Testing for Bypassing Authentication
Schema: Summary

 While most applications require authentication to gain access to
private information or to execute tasks, not every authentication
method is able to provide adequate security.

 Negligence, ignorance, or simple understatement of security threats
often result in authentication schemes that can be bypassed by simply
skipping the log in page and directly calling an internal page that is
supposed to be accessed only after authentication has been performed.

Testing for Bypassing Authentication
Schema: Summary

 In addition, it is often possible to bypass authentication measures by
tampering with requests and tricking the application into thinking that
the user is already authenticated.

 This can be accomplished either by modifying the given URL parameter,
by manipulating the form, or by counterfeiting sessions.

Testing for Bypassing Authentication
Schema: How to Test

 There are several methods of bypassing the authentication
schema that is used by a web application:

 Direct page request (forced browsing)
 Parameter modification

Testing for Bypassing Authentication
Schema: How to Test

 Direct Page Request
 If a web application implements access control only on the log in

page, the authentication schema could be bypassed.
 For example, if a user directly requests a different page via forced

browsing, that page may not check the credentials of the user before
granting access.

 Attempt to directly access a protected page through the address
bar in your browser to test using this method.

Testing for Bypassing Authentication
Schema: How to Test

 Direct page request

Testing for Bypassing Authentication
Schema: How to Test

 Direct page request

Testing for Bypassing Authentication
Schema: How to Test

 Direct page request

Testing for Bypassing Authentication
Schema: How to Test

 Parameter Modification
 Another problem related to authentication design is when the

application verifies a successful log in on the basis of a fixed value
parameters.

 A user could modify these parameters to gain access to the
protected areas without providing valid credentials.

Testing for Bypassing Authentication
Schema: How to Test

 Parameter Modification
 In this example, the parameter is in the URL, but a proxy could

also be used to modify the parameter, especially when the
parameters are sent as form elements in a POST request or when
the parameters are stored in a cookie.

Testing for Vulnerable Remember
Password: Summary

 Browsers will sometimes ask a user if they wish to remember
the password that they just entered.

 The browser will then store the password, and automatically
enter it whenever the same authentication form is visited.

 This is a convenience for the user.

 Additionally some websites will offer custom “remember me”
functionality to allow users to persist log ins on a specific client
system.

Testing for Vulnerable Remember
Password: Summary

 Having the browser store passwords is not only a convenience for
end-users, but also for an attacker.

 If an attacker can gain access to the victim’s browser (e.g. through a
Cross Site Scripting attack, or through a shared computer), then they
can retrieve the stored passwords.

 It is not uncommon for browsers to store these passwords in an easily
retrievable manner, but even if the browser were to store the
passwords encrypted and only retrievable through the use of a master
password, an attacker could retrieve the password by visiting the
target web application’s authentication form, entering the victim’s
username, and letting the browser to enter the password.

Testing for Vulnerable Remember
Password: How to Test

 Look for passwords being stored in a cookie.
 Examine the cookies stored by the application.
 Verify that the credentials are not stored in clear text, but are

hashed.
 Examine the hashing mechanism: if it is a common, well-known

algorithm, check for its strength; in hash functions, attempt several
usernames to check whether the hash function is easily guessable.

 Verify that the credentials are only sent during the log in phase, and
not sent together with every request to the application.

 Consider other sensitive form fields
 e.g. an answer to a secret question that must be entered in a

password recovery or account unlock form.

Testing for Weak password policy:
Summary

 The most prevalent and most easily administered authentication
mechanism is a static password.

 The password represents the keys to the kingdom, but is often
subverted by users in the name of usability.

 In each of the recent high profile hacks that have revealed user
credentials, it is lamented that most common passwords are still:
123456, password and qwerty.

Testing for Weak password policy: Test
Objectives

 Determine the resistance of the application against brute force
password guessing using available password dictionaries by
evaluating the length, complexity, reuse and aging requirements
of passwords.

Testing for Weak password policy:
How to Test

 What characters are permitted and forbidden for use within a password?
Is the user required to use characters from different character sets such
as lower and uppercase letters, digits and special symbols?

 How often can a user change their password? How quickly can a user
change their password after a previous change? Users may bypass
password history requirements by changing their password 5 times in a
row so that after the last password change they have configured their
initial password again.

 When must a user change their password? After 90 days? After account
lockout due to excessive log on attempts?

 How often can a user reuse a password? Does the application maintain a
history of the user’s previous used 8 passwords?

 How different must the next password be from the last password?
 Is the user prevented from using his username or other account

information (such as first or last name) in the password?

Testing for Weak Security
Question/Answer: Summary

 Often called “secret” questions and answers, security questions
and answers are often used to recover forgotten passwords, or
as extra security on top of the password.

 They are typically generated upon account creation and require
the user to select from some pre-generated questions and
supply an appropriate answer.

 They may allow the user to generate their own question and
answer pairs.

 Both methods are prone to insecurities.
 Ideally, security questions should generate answers that are only

known by the user, and not guessable or discoverable by
anybody else.

 This is harder than it sounds.

Testing for Weak Security
Question/Answer: Summary

 Security questions and answers rely on the secrecy of the
answer.

 Questions and answers should be chosen so that the answers
are only known by the account holder.

 However, although a lot of answers may not be publicly known,
most of the questions that websites implement promote
answers that are pseudo-private.

Testing for Weak Security
Question/Answer

 Pre-generated questions:
 The majority of pre-generated questions are fairly simplistic in

nature and can lead to insecure answers.
 The answers may be known to family members or close friends of the

user, e.g. “What is your mother’s maiden name?”, “What is your date
of birth?”

 The answers may be easily guessable, e.g. “What is your favorite
color?”,“What is your favorite baseball team?”

 The answers may be brute forcible, e.g. “What is the first name of
your favorite high school teacher?” - the answer is probably on some
easily downloadable lists of popular first names, and therefore a
simple brute force attack can be scripted.

 The answers may be publicly discoverable, e.g. “What is your favorite
movie?” - the answer may easily be found on the user’s social media
profile page.

Testing for Weak Security
Question/Answer

 Self-generated questions:
 The problem with having users to generate their own questions is

that it allows them to generate very insecure questions, or even
bypass the whole point of having a security question in the first
place.

 Here are some real world examples that illustrate this point:
 “What is 1+1?”
 “What is your username?”
 “My password is M3@t$p1N”

Testing for Weak Security
Question/Answer: How to Test:

 Testing for weak pre-generated questions:
 Try to obtain a list of security questions by creating a new account

or by following the “I don’t remember my password”-process.
 Try to generate as many questions as possible to get a good idea of

the type of security questions that are asked.
 If any of the security questions fall in the categories described

above, they are vulnerable to being attacked (guessed, brute-forced,
available on social media, etc.).

Testing for Weak Security
Question/Answer: How to Test:

 Testing for weak self-generated questions:
 Try to create security questions by creating a new account or by

configuring your existing account’s password recovery properties.
 If the system allows the user to generate their own security

questions, it is vulnerable to having insecure questions created.
 If the system uses the self-generated security questions during the

forgotten password functionality and if usernames can be
enumerated, then it should be easy for the tester to enumerate a
number of self-generated questions.

 It should be expected to find several weak self-generated
questions using this method.

Testing for Weak Security
Question/Answer: How to Test:

 Testing for brute-forcible answers:
 Use the methods described in Testing for Weak lock out

mechanism to determine if a number of incorrectly supplied
security answers trigger a lockout mechanism.

Testing for Weak Security
Question/Answer: How to Test:

 The first thing to take into consideration when trying to exploit
security questions is the number of questions that need to be
answered.

 The majority of applications only need the user to answer a
single question, whereas some critical applications may require
the user to answer two or even more questions.

 The next step is to assess the strength of the security questions.

 Could the answers be obtained by a simple Google search or
with social engineering attack?

Testing for Weak Security
Question/Answer: How to Test:

 As a penetration tester, here is a step-by-step walk-through of
exploiting a security question scheme:

 Does the application allow the end-user to choose the question
that needs to be answered?

 Determine how many guesses you have if possible.
 Pick the appropriate question based on analysis from the above

points, and do research to determine the most likely answers.

Testing for Weak Password Change or
Reset Functionalities: Summary

 The password change and reset function of an application is a
self-service password change or reset mechanism for users.

 This self-service mechanism allows users to quickly change or
reset their password without an administrator intervening.

 When passwords are changed they are typically changed within
the application.

 When passwords are reset they are either rendered within the
application or emailed to the user.

 This may indicate that the passwords are stored in plain text or
in a decryptable format.

Testing for Weak Password Change or
Reset Functionalities: Test Objectives

 Determine the resistance of the application to subversion of the
account change process allowing someone to change the
password of an account.

 Determine the resistance of the passwords reset functionality
against guessing or bypassing.

Testing for Weak Password Change or
Reset Functionalities: How to Test:

 For both password change and password reset it is important to
check:

 if users, other than administrators, can change or reset passwords
for accounts other than their own.

 if users can manipulate or subvert the password change or reset
process to change or reset the password of another user or
administrator.

Testing for Weak Password Change or
Reset Functionalities: How to Test:

 Test Password Reset:
 What information is required to reset the password?
 How are reset passwords communicated to the user?
 Are reset passwords generated randomly?
 Is the reset password functionality requesting confirmation before

changing the password?

 Test Password Change:
 Is the old password requested to complete the change??

	Authentication Testing
	Introduction
	Introduction
	Testing for Credentials Transported over an Encrypted Channel: Summary
	Testing for Credentials Transported over an Encrypted Channel: Summary
	Testing for Credentials Transported over an Encrypted Channel: How to Test
	Testing for Credentials Transported over an Encrypted Channel: How to Test
	Testing for Credentials Transported over an Encrypted Channel: How to Test
	Testing for Weak Lock Out Mechanism: Summary
	Testing for Weak Lock Out Mechanism: Summary
	Testing for Weak lock out mechanism:�Test Objectives
	Testing for Weak lock out mechanism:�How to Test
	Testing for Weak lock out mechanism:�Example
	Testing for Weak lock out mechanism:�Example
	Testing for Bypassing Authentication Schema: Summary
	Testing for Bypassing Authentication Schema: Summary
	Testing for Bypassing Authentication Schema: How to Test
	Testing for Bypassing Authentication Schema: How to Test
	Testing for Bypassing Authentication Schema: How to Test
	Testing for Bypassing Authentication Schema: How to Test
	Testing for Bypassing Authentication Schema: How to Test
	Testing for Bypassing Authentication Schema: How to Test
	Testing for Bypassing Authentication Schema: How to Test
	Testing for Vulnerable Remember Password: Summary
	Testing for Vulnerable Remember Password: Summary
	Testing for Vulnerable Remember Password: How to Test
	Testing for Weak password policy: Summary
	Testing for Weak password policy: Test Objectives
	Testing for Weak password policy:�How to Test
	Testing for Weak Security Question/Answer: Summary
	Testing for Weak Security Question/Answer: Summary
	Testing for Weak Security Question/Answer
	Testing for Weak Security Question/Answer
	Testing for Weak Security Question/Answer: How to Test:
	Testing for Weak Security Question/Answer: How to Test:
	Testing for Weak Security Question/Answer: How to Test:
	Testing for Weak Security Question/Answer: How to Test:
	Testing for Weak Security Question/Answer: How to Test:
	Testing for Weak Password Change or Reset Functionalities: Summary
	Testing for Weak Password Change or Reset Functionalities: Test Objectives
	Testing for Weak Password Change or Reset Functionalities: How to Test:
	Testing for Weak Password Change or Reset Functionalities: How to Test:

