
Authorization Testing

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Introduction

 Authorization is the concept of allowing access to resources only to
those permitted to use them.

 Testing for Authorization means understanding how the authorization
process works, and using that information to circumvent the
authorization mechanism.

 Authorization is a process that comes after a successful authentication,
so the tester will verify this point after he holds valid credentials,
associated with a well-defined set of roles and privileges.

 During this kind of assessment, it should be verified if it is possible to
bypass the authorization schema, find a path traversal vulnerability, or
find ways to escalate the privileges assigned to the tester.



Testing for Bypassing Authorization 
Schema: Summary

 This kind of test focuses on verifying how the authorization
schema has been implemented for each role or privilege to get
access to reserved functions and resources.

 For every specific role the tester holds during the assessment,
for every function and request that the application executes
during the post-authentication phase, it is necessary to verify:

 Is it possible to access that resource even if the user is not
authenticated?

 Is it possible to access that resource after the log-out?
 Is it possible to access functions and resources that should be

accessible to a user that holds a different role or privilege?



Testing for Bypassing Authorization 
Schema: Summary

 Try to access the application as an administrative user and track
all the administrative functions.

 Is it possible to access administrative functions also if the tester is
logged as a user with standard privileges?

 Is it possible to use these administrative functions as a user with a
different role and for whom that action should be denied?



Testing for Bypassing Authorization 
Schema: How to Test

 Testing for access to administrative functions
 For example, suppose that the ‘AddUser.jsp’ function is part of

the administrative menu of the application, and it is possible to
access it by requesting the following URL:

 Then, the following HTTP request is generated when calling the
AddUser function:



Testing for Bypassing Authorization 
Schema: How to Test

 Testing for access to resources assigned to a different role

 For example, analyze an application that uses a shared directory
to store temporary PDF files for different users.

 Suppose that documentABC.pdf should be accessible only by the
user test1 with roleA.

 Verify if user test2 with roleB can access that resource.



Testing for Privilege Escalation: 
Summary

 Privilege escalation occurs when a user gets access to more
resources or functionality than they are normally allowed, and
such elevation or changes should have been prevented by the
application.

 This is usually caused by a flaw in the application.

 The result is that the application performs actions with more
privileges than those intended by the developer or system
administrator.



Testing for Privilege Escalation: 
Summary

 The degree of escalation depends on what privileges the
attacker is authorized to possess, and what privileges can be
obtained in a successful exploit.

 For example, a programming error that allows a user to gain
extra privilege after successful authentication limits the degree
of escalation, because the user is already authorized to hold
some privilege.

 Likewise, a remote attacker gaining superuser privilege without
any authentication presents a greater degree of escalation.



Testing for Privilege Escalation: 
Summary

 Usually, people refer to vertical escalation when it is possible to
access resources granted to more privileged accounts (e.g.,
acquiring administrative privileges for the application), and to
horizontal escalation when it is possible to access resources
granted to a similarly configured account (e.g., in an online
banking application, accessing information related to a different
user).



Testing for Privilege Escalation:
How to Test

 Testing for role/privilege manipulation
 In every portion of the application where a user can create

information in the database (e.g., making a payment, adding a
contact, or sending a message), can receive information (statement
of account, order details, etc.), or delete information (drop users,
messages, etc.), it is necessary to record that functionality.

 The tester should try to access such functions as another user in
order to verify if it is possible to access a function that should not
be permitted by the user’s role/privilege (but might be permitted
as another user).



Testing for Privilege Escalation:
How to Test

 For example
 The following HTTP POST allows the user that belongs to grp001

to access order #0001:

 Verify if a user that does not belong to grp001 can modify the
value of the parameters ‘groupID’ and ‘orderID’ to gain access to
that privileged data.



Testing for Privilege Escalation:
How to Test

 For example
 The following server’s

answer shows a hidden field
in the HTML returned to
the user after a successful
authentication.

 hidden field:
 https://www.w3schools.com/ta

gs/tryit.asp?filename=tryhtml
5_input_type_hidden

https://www.w3schools.com/tags/tryit.asp?filename=tryhtml5_input_type_hidden


Testing for Insecure Direct Object 
References: Summary

 Insecure Direct Object References occur when an application
provides direct access to objects based on user-supplied input.

 As a result of this vulnerability attackers can bypass
authorization and access resources in the system directly, for
example database records or files.

 Insecure Direct Object References allow attackers to bypass
authorization and access resources directly by modifying the
value of a parameter used to directly point to an object.

 Such resources can be database entries belonging to other users,
files in the system, and more.

 This is caused by the fact that the application takes user
supplied input and uses it to retrieve an object without
performing sufficient authorization checks.



Testing for Insecure Direct Object 
References: How to Test

 To test for this vulnerability the tester first needs to map out all
locations in the application where user input is used to
reference objects directly.

 For example, locations where user input is used to access a
database row, a file, application pages and more.

 Next the tester should modify the value of the parameter used
to reference objects and assess whether it is possible to
retrieve objects belonging to other users or otherwise bypass
authorization.



Testing for Insecure Direct Object 
References: How to Test

 The best way to test for direct object references would be by
having at least two (often more) users to cover different owned
objects and functions.

 For example two users each having access to different objects
(such as purchase information, private messages, etc.), and (if
relevant) users with different privileges (for example
administrator users) to see whether there are direct references
to application functionality.

 By having multiple users the tester saves valuable testing time in
guessing different object names as he can attempt to access
objects that belong to the other user.



Testing for Insecure Direct Object 
References: How to Test

 The value of a parameter is used directly to retrieve a database
record

 Sample request:

 In this case, the value of the invoice parameter is used as an index
in an invoices table in the database.

 The application takes the value of this parameter and uses it in a
query to the database.

 The application then returns the invoice information to the user.
 Since the value of invoice goes directly into the query, by modifying

the value of the parameter it is possible to retrieve any invoice
object, regardless of the user to whom the invoice belongs.



Testing for Insecure Direct Object 
References: How to Test

 The value of a parameter is used directly to perform an
operation in the system

 Sample request:

 In this case, the value of the user parameter is used to tell the
application for which user it should change the password.

 In many cases this step will be a part of a wizard, or a multi-step
operation.

 In the first step the application will get a request stating for which
user’s password is to be changed, and in the next step the user will
provide a new password (without asking for the current one).



Testing for Insecure Direct Object 
References: How to Test

 The value of a parameter is used directly to perform an
operation in the system

 Sample request:

 The user parameter is used to directly reference the object of the
user for whom the password change operation will be performed.

 To test for this case the tester should attempt to provide a
different test username than the one currently logged in, and check
whether it is possible to modify the password of another user.



Testing for Insecure Direct Object 
References: How to Test

 The value of a parameter is used directly to retrieve a file
system resource

 Sample request:

 In this case, the value of the file parameter is used to tell the
application what file the user intends to retrieve.

 By providing the name or identifier of a different file (for example
file=image00012. jpg) the attacker will be able to retrieve objects
belonging to other users.



Testing for Insecure Direct Object 
References: How to Test

 The value of a parameter is used directly to access application
functionality

 Sample request:

 In this case, the value of the menuitem parameter is used to tell
the application which menu item (and therefore which application
functionality) the user is attempting to access.

 Assume the user is supposed to be restricted and therefore has
links available only to access to menu items 1, 2 and 3. By
modifying the value of menuitem parameter it is possible to bypass
authorization and access additional application functionality.

 To test for this case the tester identifies a location where
application functionality is determined by reference to a menu item,
maps the values of menu items the given test user can access, and
then attempts other menu items.


	Authorization Testing
	Introduction
	Testing for Bypassing Authorization Schema: Summary
	Testing for Bypassing Authorization Schema: Summary
	Testing for Bypassing Authorization Schema: How to Test
	Testing for Bypassing Authorization Schema: How to Test
	Testing for Privilege Escalation: Summary
	Testing for Privilege Escalation: Summary
	Testing for Privilege Escalation: Summary
	Testing for Privilege Escalation:�How to Test
	Testing for Privilege Escalation:�How to Test
	Testing for Privilege Escalation:�How to Test
	Testing for Insecure Direct Object References: Summary
	Testing for Insecure Direct Object References: How to Test
	Testing for Insecure Direct Object References: How to Test
	Testing for Insecure Direct Object References: How to Test
	Testing for Insecure Direct Object References: How to Test
	Testing for Insecure Direct Object References: How to Test
	Testing for Insecure Direct Object References: How to Test
	Testing for Insecure Direct Object References: How to Test

