
Session Management Testing

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Introduction

◼ One of the core components of any web-based application is

the mechanism by which it controls and maintains the state for

a user interacting with it.

◼ This is referred to as Session Management and is defined as the

set of all controls governing state-full interaction between a

user and the web-based application.

◼ This broadly covers anything from how user authentication is

performed, to what happens upon them logging out.



Introduction

◼ HTTP is a stateless protocol, meaning that web servers respond

to client requests without linking them to each other.

◼ Even simple application logic requires a user’s multiple requests

to be associated with each other across a “session”.

◼ Most popular web application environments, such as ASP and

PHP, provide developers with built-in session handling routines.

◼ Some kind of identification token will typically be issued, which

will be referred to as a “Session ID” or Cookie.



Testing for Session Management 

Schema

◼ In order to avoid continuous authentication for each page of a

website or service, web applications implement various

mechanisms to store and validate credentials for a pre-

determined timespan.

◼ These mechanisms are known as Session Management and while

they are important in order to increase the ease of use and

user-friendliness of the application, they can be exploited by a

penetration tester to gain access to a user account, without the

need to provide correct credentials.

◼ In this test, the tester wants to check that cookies and other

session tokens are created in a secure and unpredictable way.

◼ An attacker who is able to predict and forge a weak cookie can

easily hijack the sessions of legitimate users.



Testing for Session Management 

Schema

◼ In a nutshell, when a user accesses an application which needs

to keep track of the actions and identity of that user across

multiple requests, a cookie (or cookies) is generated by the

server and sent to the client.

◼ The client will then send the cookie back to the server in all

following connections until the cookie expires or is destroyed.

◼ The data stored in the cookie can provide to the server a large

spectrum of information about who the user is, what actions he

has performed so far, what his preferences are, etc. therefore

providing a state to a stateless protocol like HTTP.



Testing for Session Management 

Schema

◼ A typical example is provided by an online shopping cart.

◼ Throughout the session of a user, the application must keep

track of his identity, his profile, the products that he has chosen

to buy, the quantity, the individual prices, the discounts, etc.

◼ Cookies are an efficient way to store and pass this information

back and forth (other methods are URL parameters and hidden

fields).



Testing for Session Management 

Schema

◼ Due to the importance of the data that they store, cookies are

therefore vital in the overall security of the application.

◼ Being able to tamper with cookies may result in
◼ hijacking the sessions of legitimate users,

◼ gaining higher privileges in an active session,

◼ and in general influencing the operations of the application in an

unauthorized way.



Testing for Session Management 

Schema

◼ In this test, the tester has to check whether the cookies issued

to clients can resist a wide range of attacks aimed to interfere

with the sessions of legitimate users and with the application

itself.

◼ The overall goal is to be able to forge a cookie that will be

considered valid by the application and that will provide some

kind of unauthorized access (session hijacking, privilege

escalation, ...).



Testing for Session Management 

Schema

◼ Usually the main steps of the attack pattern are the following:
◼ cookie collection:

◼ collection of a sufficient number of cookie samples;

◼ cookie reverse engineering:

◼ analysis of the cookie generation algorithm;

◼ cookie manipulation:

◼ forging of a valid cookie in order to perform the attack.

◼ this last step might require a large number of attempts,

depending on how the cookie is created (cookie brute-force

attack).



Testing for Session Management 

Schema: How to Test

◼ All interaction between the client and application should be

tested at least against the following criteria:
◼ Are all Set-Cookie directives tagged as Secure?

◼ Do any Cookie operations take place over unencrypted transport?

◼ Are any Cookies persistent?

◼ What Expires= times are used on persistent cookies, and are they

reasonable?

◼ What HTTP/1.1 Cache-Control settings are used to protect

Cookies?



Testing for Session Fixation

◼ When an application does not renew its session cookie(s) after

a successful user authentication, it could be possible to find a

session fixation vulnerability and force a user to utilize a cookie

known by the attacker.

◼ In that case, an attacker could steal the user session (session

hijacking).

◼ Session fixation vulnerabilities occur when:
◼ A web application authenticates a user without first invalidating the

existing session ID, thereby continuing to use the session ID

already associated with the user.

◼ An attacker is able to forge a known session ID on a user so that,

once the user authenticates, the attacker has access to the

authenticated session.



Testing for Session Fixation

◼ In the generic exploit of session fixation vulnerabilities, an

attacker creates a new session on a web application and records

the associated session identifier.

◼ The attacker then causes the victim to authenticate against the

server using the same session identifier, giving the attacker

access to the user’s account through the active session.

◼ Furthermore, the issue described above is problematic for sites

that issue a session identifier over HTTP and then redirect the

user to a HTTPS log in form.

◼ If the session identifier is not reissued upon authentication, the

attacker can eavesdrop and steal the identifier and then use it to

hijack the session.



Testing for Session Fixation:

How to Test

◼ Testing for Session Fixation vulnerabilities:
◼ The first step is to make a request to the site to be tested

(example www.example.com). If the tester requests the following:

◼ They will obtain the following answer:



Testing for Session Fixation:

How to Test

◼ Testing for Session Fixation

vulnerabilities:
◼ The application sets a new

session identifier

JSESSIONID=0000d-

8eyYq3L0z2fgq10m4v-rt4:-1

for the client.



Testing for Session Fixation:

How to Test

◼ Testing for Session Fixation

vulnerabilities:
◼ Next, if the tester successfully

authenticates to the

application with the following

POST HTTPS:



Testing for Session Fixation:

How to Test

◼ Testing for Session Fixation vulnerabilities:
◼ The tester observes the following response from the server:

◼ Any new cookie?



Testing for Session Fixation:

How to Test

◼ Testing for Session Fixation vulnerabilities:
◼ As no new cookie has been issued upon a successful

authentication the tester knows that it is possible to perform

session hijacking.



Testing for Cross-Site Request 

Forgery

◼ CSRF is an attack which forces an end user to execute

unwanted actions on a web application in which he/she is

currently authenticated.

◼ With a little help of social engineering (like sending a link via

email or chat), an attacker may force the users of a web

application to execute actions of the attacker’s choosing.

◼ A successful CSRF exploit can compromise end user data and

operation, when it targets a normal user.

◼ If the targeted end user is the administrator account, a CSRF

attack can compromise the entire web application.



Testing for CSRF

◼ CSRF relies on the following:
◼ [1] Web browser behavior regarding the handling of session-

related information such as cookies and http authentication

information;

◼ [2] Knowledge by the attacker of valid web application URLs;

◼ [3] Application session management relying only on information

which is known by the browser;

◼ [4] Existence of HTML tags whose presence cause immediate

access to an http[s] resource; for example the image tag img.



Testing for CSRF

◼ Suppose, for simplicity’s sake, to refer to GET-accessible URLs

(though the discussion applies as well to POST requests).

◼ If victim has already authenticated himself, submitting another

request causes the cookie to be automatically sent with it.



Testing for CSRF

◼ The GET request could be originated in several different ways:
◼ by the user, who is using the actual web application;

◼ by the user, who types the URL directly in the browser;

◼ by the user, who follows a link (external to the application)

pointing to the URL.



Testing for CSRF

◼ These invocations are indistinguishable by the application.

◼ In particular, the third may be quite dangerous.

◼ There are a number of techniques (and of vulnerabilities) which

can disguise the real properties of a link.

◼ The link can be embedded in an email message, or appear in a

malicious web site where the user is lured, i.e., the link appears

in content hosted elsewhere (another web site, an HTML email

message, etc.) and points to a resource of the application.



Testing for CSRF

◼ If the user clicks on the link, since it was already authenticated

by the web application on site, the browser will issue a GET

request to the web application, accompanied by authentication

information (the session id cookie).

◼ This results in a valid operation performed on the web

application and probably not what the user expects to happen.

◼ Think of a malicious link causing a fund transfer on a web

banking application to appreciate the implications.



Testing for CSRF

◼ By using a tag such as img, it is not even necessary that the user

follows a particular link.

◼ Suppose the attacker sends the user an email inducing him to

visit an URL referring to a page containing the following

(oversimplified) HTML:



Testing for CSRF

◼ The problem here is a consequence of the following facts:
◼ there are HTML tags whose appearance in a page result in

automatic http request execution (img being one of those);

◼ the browser has no way to tell that the resource referenced by

img is not actually an image and is in fact not legitimate;



Testing for CSRF: How to Test

◼ For a black box test, the tester must know URLs in the

restricted (authenticated) area.

◼ If they possess valid credentials, they can assume both roles –

the attacker and the victim.

◼ In this case, testers know the URLs to be tested just by

browsing around the application.

◼ Otherwise, if testers don’t have valid credentials available, they

have to organize a real attack, and so induce a legitimate, logged

in user into following an appropriate link.

◼ This may involve a substantial level of social engineering.



Testing for CSRF: How to Test

◼ Either way, a test case can be constructed as follows:
◼ let u be the URL being tested; for example, u =

http://www.example.com/action

◼ build an html page containing the http request referencing URL u

(specifying all relevant parameters; in the case of http GET this is

straightforward, while to a POST request you need to resort to

some Javascript);

◼ make sure that the valid user is logged on the application;

◼ induce him into following the link pointing to the URL to be tested

(social engineering involved if you cannot impersonate the user

yourself);

◼ observe the result, i.e. check if the web server executed the

request.

http://www.example.com/action

