
Client SideTesting

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Introduction

 Client-Side testing is concerned with the execution of code on
the client, typically natively within a web browser or browser
plugin.

 The execution of code on the client-side is distinct from
executing on the server and returning the subsequent content.



Testing for JavaScript Execution:
Summary

 A JavaScript Injection vulnerability is a subtype of Cross Site
Scripting (XSS) that involves the ability to inject arbitrary
JavaScript code that is executed by the application inside the
victim’s browser.

 This vulnerability can have many consequences, like disclosure of
a user’s session cookies that could be used to impersonate the
victim, or, more generally, it can allow the attacker to modify the
page content seen by the victims or the application behavior.



Testing for JavaScript Execution:
How to Test

 Such vulnerability occurs when the application lacks of a proper
user supplied input and output validation.

 JavaScript is used to dynamically populate web pages, this
injection occur during this content processing phase and
consequently affect the victim.

 When trying to exploit this kind of issues, consider that some
characters are treated differently by different browsers.



Testing for JavaScript Execution:
How to Test

 https://www.youtube.com/watch?v=Pavl4MYFfSw

https://www.youtube.com/watch?v=Pavl4MYFfSw


Testing for HTML Injection:
Summary

 HTML injection is a type of injection issue that occurs when a
user is able to control an input point and is able to inject
arbitrary HTML code into a vulnerable web page.

 This vulnerability can have many consequences, like disclosure of
a user’s session cookies that could be used to impersonate the
victim, or, more generally, it can allow the attacker to modify the
page content seen by the victims.



Testing for HTML Injection:
How to Test

 This vulnerability occurs when the user input is not correctly
sanitized and the output is not encoded.

 An injection allows the attacker to send a malicious HTML page
to a victim.

 The targeted browser will not be able to distinguish (trust) the
legit from the malicious parts and consequently will parse and
execute all as legit in the victim context.



Testing for HTML Injection:
How to Test

 There is a wide range of methods and attributes that could be
used to render HTML content.

 If these methods are provided with an untrusted input, then
there is a high risk of XSS, specifically an HTML injection one.

 Malicious HTML code could be injected for example via
innerHTML, that is used to render user inserted HTML code.

 If strings are not correctly sanitized, the problem could lead to
XSS based HTML injection.

 Another method could be document.write()



Testing for HTML Injection:
How to Test

 When trying to exploit this kind of issues, consider that some
characters are treated differently by different browsers.

 The innerHTML property sets or returns the inner HTML of an
element.

 An improper usage of this property, that means lack of
sanitization from untrusted input and missing output encoding,
could allow an attacker to inject malicious HTML code.



Testing for HTML Injection:
How to Test

 https://www.youtube.com/watch?v=0M711nyRgn0

https://www.youtube.com/watch?v=0M711nyRgn0


Testing for Clickjacking:
Summary

 “Clickjacking” (which is a subset of the “UI redressing”) is a
malicious technique that consists of deceiving a web user into
interacting (in most cases by clicking) with something different
to what the user believes they are interacting with.

 This type of attack, that can be used alone or in combination
with other attacks, could potentially send unauthorized
commands or reveal confidential information while the victim is
interacting on seemingly harmless web pages.

 The term “Clickjacking” was coined by Jeremiah Grossman and
Robert Hansen in 2008.



Testing for Clickjacking:
Summary

 A Clickjacking attack uses seemingly innocuous features of
HTML and Javascript to force the victim to perform undesired
actions, such as clicking on a button that appears to perform
another operation.

 This is a “client side” security issue that affects a variety of
browsers and platforms.



Testing for Clickjacking:
Summary

 To carry out this type of technique the attacker has to create a
seemingly harmless web page that loads the target application
through the use of an iframe (suitably concealed through the
use of CSS code).

 Once this is done, the attacker could induce the victim to
interact with his fictitious web page by other means (like for
example social engineering).

 Like others attacks, an usual prerequisite is that the victim is
authenticated against the attacker’s target website.



Testing for Clickjacking:
Summary

 Once the victim is surfing on the fictitious web page, he thinks
that he is interacting with the visible user interface, but
effectively he is performing actions on the hidden page.

 Since the hidden page is an authentic page, the attacker can
deceive users into performing actions which they never
intended to perform through an “ad hoc” positioning of the
elements in the web page.

 The power of this method is due to the fact that the actions
performed by the victim are originated from the authentic
target web page (hidden but authentic).



Testing for Clickjacking:
How to Test

 As mentioned above, this type of attack is often designed to
allow an attacker to induce user’s actions on the target site.

 We have to discover if the website that we are testing has no
protections against clickjacking attacks or, if the developers have
implemented some forms of protection, if these techniques are
liable to bypass.

 Once we know that the website is vulnerable, we can create a
“proof of concept” to exploit the vulnerability.



Testing for Clickjacking:
How to Test

 The first step to discover if a website is vulnerable, is to check if
the target web page could be loaded into an iframe.

 To do this you need to create a simple web page that includes a
frame containing the target web page.

 The HTML code to create this testing web page is displayed in
the following snippet:



Testing for Clickjacking:
How to Test

 Result Expected:
 If you can see both the text “Website is vulnerable to clickjacking!”

at the top of the page and your target web page successfully
loaded into the frame, then your site is vulnerable and has no type
of protection against Clickjacking attacks.

 Now you can directly create a “proof of concept” to demonstrate
that an attacker could exploit this vulnerability.


	Client Side Testing
	Introduction
	Testing for JavaScript Execution:�Summary
	Testing for JavaScript Execution:�How to Test
	Testing for JavaScript Execution:�How to Test
	Testing for HTML Injection:�Summary
	Testing for HTML Injection:�How to Test
	Testing for HTML Injection:�How to Test
	Testing for HTML Injection:�How to Test
	Testing for HTML Injection:�How to Test
	Testing for Clickjacking:�Summary
	Testing for Clickjacking:�Summary
	Testing for Clickjacking:�Summary
	Testing for Clickjacking:�Summary
	Testing for Clickjacking:�How to Test
	Testing for Clickjacking:�How to Test
	Testing for Clickjacking:�How to Test

