
Input Validation Testing

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Introduction

 The most common web application security weakness is the
failure to properly validate input coming from the client or from
the environment before using it.

 This weakness leads to almost all of the major vulnerabilities in
web applications

 cross site scripting
 SQL injection
 interpreter injection
 file system attacks
 buffer overflows

Introduction

 Data from an external entity or client should never be trusted,
since it can be arbitrarily tampered with by an attacker.

 “All Input is Evil”, says Michael Howard in his famous book
“Writing Secure Code”.

 That is rule number one.
 Unfortunately, complex applications often have a large number

of entry points, which makes it difficult for a developer to
enforce this rule.

 DataValidation Testing
 This is the task of testing all the possible forms of input to

understand if the application sufficiently validates input data before
using it.

Testing for SQL Injection: Summary

 An SQL injection attack consists of insertion or “injection” of
either a partial or complete SQL query via the data input or
transmitted from the client (browser) to the web application.

 A successful SQL injection attack can read sensitive data from
the database, modify database data (insert/update/delete),
execute administration operations on the database (such as
shutdown the DBMS), recover the content of a given file
existing on the DBMS file system or write files into the file
system, and, in some cases, issue commands to the operating
system.

 SQL injection attacks are a type of injection attack, in which
SQL commands are injected into data-plane input in order to
affect the execution of predefined SQL commands.

Testing for SQL Injection: Summary

 In general, the way web applications construct SQL statements
involving SQL syntax written by the programmers is mixed with
user-supplied data.

 Example:

 In the example above the variable $id contains user-supplied data,
while the remainder is the SQL static part supplied by the
programmer

 making the SQL statement dynamic

Testing for SQL Injection: Summary

 Because the way it was constructed, the user can supply crafted
input trying to make the original SQL statement execute further
actions of the user’s choice.

 The example below illustrates the user-supplied data “10 or
1=1”, changing the logic of the SQL statement, modifying the
WHERE clause adding a condition “or 1=1”.

Testing for SQL Injection: Summary

 SQL Injection attacks can be divided into the following three
classes:

 Inband: data is extracted using the same channel that is used to
inject the SQL code.

 This is the most straightforward kind of attack, in which the
retrieved data is presented directly in the application web page.

 Out-of-band: data is retrieved using a different channel (e.g., an
email with the results of the query is generated and sent to the
tester).

 Inferential or Blind: there is no actual transfer of data, but the
tester is able to reconstruct the information by sending particular
requests and observing the resulting behavior of the DB Server.

Testing for SQL Injection: Summary

 A successful SQL Injection attack requires the attacker to craft
a syntactically correct SQL Query.

 If the application returns an error message generated by an
incorrect query, then it may be easier for an attacker to
reconstruct the logic of the original query and, therefore,
understand how to perform the injection correctly.

 However, if the application hides the error details, then the
tester must be able to reverse engineer the logic of the original
query.

Testing for SQL Injection: Summary

 About the techniques to exploit SQL injection flaws there are five
commons techniques.

 Also those techniques sometimes can be used in a combined way (e.g.
union operator and out-of-band):

 Union Operator: can be used when the SQL injection flaw happens in a
SELECT statement, making it possible to combine two queries into a
single result or result set.

 Boolean: use Boolean condition(s) to verify whether certain conditions are
true or false.

 Error based: this technique forces the database to generate an error, giving
the attacker or tester information upon which to refine their injection.

 Out-of-band: technique used to retrieve data using a different channel (e.g.,
make a HTTP connection to send the results to a web server).

 Time delay: use database commands (e.g. sleep) to delay answers in
conditional queries. It is useful when attacker doesn’t have some kind of
answer (result, output, or error) from the application.

Testing for SQL Injection: How to Test

 Detection Techniques
 The first step in this test is to understand when the application

interacts with a DB Server in order to access some data.
 Typical examples of cases when an application needs to talk to a

DB include:
 Authentication forms: when authentication is performed using a web

form, chances are that the user credentials are checked against a
database that contains all usernames and passwords (or, better,
password hashes).

 Search engines: the string submitted by the user could be used in a
SQL query that extracts all relevant records from a database.

 E-Commerce sites: the products and their characteristics (price,
description, availability, etc) are very likely to be stored in a database.

Testing for SQL Injection: How to Test

 The tester has to make a list of all input fields whose values
could be used in crafting a SQL query, including the hidden fields
of POST requests and then test them separately, trying to
interfere with the query and to generate an error.

 The very first test usually consists of adding a single quote (‘) or
a semicolon (;) to the field or parameter under test.

 The first is used in SQL as a string terminator and, if not filtered by
the application, would lead to an incorrect query.

 The second is used to end a SQL statement and, if it is not filtered,
it is also likely to generate an error.

Testing for SQL Injection: How to Test

 The output of a vulnerable field might resemble the following
(on a Microsoft SQL Server, in this case):

Testing for SQL Injection: How to Test

 Also comment delimiters (-- or /* */, etc) and other SQL
keywords like ‘AND’ and ‘OR’ can be used to try to modify the
query.

 A very simple but sometimes still effective technique is simply
to insert a string where a number is expected, as an error like
the following might be generated:

Testing for SQL Injection: How to Test

 Monitor all the responses from the web server and have a look at the
HTML/javascript source code.

 Sometimes the error is present inside them but for some reason
(e.g. javascript error, HTML comments, etc) is not presented to the
user.

 A full error message, like those in the examples, provides a wealth of
information to the tester in order to mount a successful injection
attack.

 However, applications often do not provide so much detail: a simple
‘500 Server Error’ or a custom error page might be issued, meaning
that we need to use blind injection techniques.

 In any case, it is very important to test each field separately:
 Only one variable must vary while all the other remain constant, in

order to precisely understand which parameters are vulnerable
and which are not.

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 1 (classical SQL Injection):
 Consider the following SQL query:

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 1 (classical SQL Injection):
 A similar query is generally used from the web application in order

to authenticate a user.
 If the query returns a value, it means that inside the database a

user with that set of credentials exists, then the user is allowed to
login to the system, otherwise access is denied.

 The values of the input fields are generally obtained from the user
through a web form.

 Suppose we insert the following Username and Password values:

 The query will be:

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 1 (classical SQL Injection):
 If we suppose that the values of the parameters are sent to the

server through the GET method, and if the domain of the
vulnerable web site is www.example.com, the request that we’ll
carry out will be:

 After a short analysis we notice that the query returns a value
(or a set of values) because the condition is always true (OR
1=1).

 In this way the system has authenticated the user without
knowing the username and password.

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 1 (classical SQL Injection):
 In some systems the first row of a user table would be an

administrator user.
 This may be the profile returned in some cases.
 Another example of query is the following:

 In this case, there are two problems, one due to the use of the
parentheses and one due to the use of MD5 hash function.

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 1 (classical SQL Injection):

 First of all, we resolve the problem of the parentheses.
 That simply consists of adding a number of closing parentheses

until we obtain a corrected query.
 To resolve the second problem, we try to evade the second

condition.
 We add to our query a final symbol that means that a

comment is beginning.
 In this way, everything that follows such symbol is considered a

comment.
 Every DBMS has its own syntax for comments, however, a

common symbol to the greater majority of the databases is /*.
 In Oracle the symbol is “--”.

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 1 (classical SQL Injection):
 This said, the values that we’ll use as Username and Password are:

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 1 (classical SQL Injection):
 This may return a number of values.
 Sometimes, the authentication code verifies that the number of

returned records/results is exactly equal to 1.

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 1 (classical SQL Injection):
 In the previous examples, this situation would be difficult (in the

database there is only one value per user).
 In order to go around this problem, it is enough to insert a SQL

command that imposes a condition that the number of the
returned results must be one.

 (One record returned) In order to reach this goal, we use the
operator “LIMIT <num>”, where <num> is the number of the
results/records that we want to be returned.

 With respect to the previous example, the value of the fields
Username and Password will be modified as follows:

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 1 (classical SQL Injection):
 In this way, we create a request like the follow:

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 2 (simple SELECT statement):
 Consider the following SQL query:

 Consider also the request to a script who executes the query
above:

 When the tester tries a valid value (e.g. 10 in this case), the
application will return the description of a product.

 A good way to test if the application is vulnerable in this scenario
is play with logic, using the operators AND and OR.

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 2 (simple SELECT statement):
 Consider the request:

 In this case, probably the application would return some message
telling us there is no content available or a blank page.

 Then the tester can send a true statement and check if there is a
valid result:

Testing for SQL Injection: Standard
SQL Injection Testing

 Example 3 (Stacked queries):
 Depending on the API which the web application is using and the

DBMS (e.g. PHP + PostgreSQL, ASP+SQL SERVER) it may be
possible to execute multiple queries in one call.

 Consider the following SQL query:

 A way to exploit the above scenario would be:

Testing for SQL Injection: Standard
SQL Injection Testing

 Fingerprinting the Database:
 Even the SQL language is a standard, every DBMS has its

peculiarity and differs from each other in many aspects like special
commands, functions to retrieve data such as users names and
databases, features, comments line etc.

 When the testers move to a more advanced SQL injection
exploitation they need to know what the back end database is.

Testing for SQL Injection: Standard
SQL Injection Testing

 Fingerprinting the Database:
 1) The first way to find out what back end database is used is by

observing the error returned by the application.
 Follow are some examples:

 MySql:

 Oracle:

 MS SQL Server

Testing for SQL Injection: Standard
SQL Injection Testing

 Fingerprinting the Database:
 2) If there is no error message or a custom error message, the

tester can try to inject into string field using concatenation
technique:

	Input Validation Testing
	Introduction
	Introduction
	Testing for SQL Injection: Summary
	Testing for SQL Injection: Summary
	Testing for SQL Injection: Summary
	Testing for SQL Injection: Summary
	Testing for SQL Injection: Summary
	Testing for SQL Injection: Summary
	Testing for SQL Injection: How to Test
	Testing for SQL Injection: How to Test
	Testing for SQL Injection: How to Test
	Testing for SQL Injection: How to Test
	Testing for SQL Injection: How to Test
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing
	Testing for SQL Injection: Standard SQL Injection Testing

