
Input Validation Testing

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Testing for Reflected Cross Site 
Scripting: Summary

 Reflected Cross-site Scripting (XSS) occur when an attacker
injects browser executable code within a single HTTP response.

 The injected attack is not stored within the application itself; it
is non-persistent and only impacts users who open a maliciously
crafted link or third-party web page.

 The attack string is included as part of the crafted URI or HTTP
parameters, improperly processed by the application, and
returned to the victim.



Testing for Reflected Cross Site 
Scripting: Summary

 Reflected XSS are the most frequent type of XSS attacks found
in the wild. Reflected XSS attacks are also known as non-
persistent XSS attacks and, since the attack payload is delivered
and executed via a single request and response, they are also
referred to as first-order or type 1 XSS.

 When a web application is vulnerable to this type of attack, it
will pass unvalidated input sent through requests back to the
client.

 The common modus operandi of the attack includes a design
step, in which the attacker creates and tests an offending URI, a
social engineering step, in which she convinces her victims to
load this URI on their browsers, and the eventual execution of
the offending code using the victim’s browser.



Testing for Reflected Cross Site 
Scripting: Summary

 Commonly the attacker’s code is written in the Javascript
language, but other scripting languages are also used, e.g.,
Action-Script and VBScript. Attackers typically leverage these
vulnerabilities to install key loggers, steal victim cookies,
perform clipboard theft, and change the content of the page
(e.g., download links).

 One of the primary difficulties in preventing XSS vulnerabilities
is proper character encoding.

 In some cases, the web server or the web application could not
be filtering some encodings of characters, so, for example, the
web application might filter out “<script>”, but might not
filter %3cscript%3e which simply includes another encoding of
tags.



Testing for Reflected Cross Site 
Scripting: How to Test

 A black-box test will include at least three phases:
 [1]

 Detect input vectors. For each web page, the tester must determine
all the web application’s user-defined variables and how to input them.

 This includes hidden or non-obvious inputs such as HTTP parameters,
POST data, hidden form field values, and predefined radio or selection
values.

 Typically in-browser HTML editors or web proxies are used to view
these hidden variables. See the example below.



Testing for Reflected Cross Site 
Scripting: How to Test

 A black-box test will include at least three phases:
 [2]

 Analyze each input vector to detect potential vulnerabilities.T
 o detect an XSS vulnerability, the tester will typically use specially

crafted input data with each input vector.
 Such input data is typically harmless, but trigger responses from the

web browser that manifests the vulnerability.
 Testing data can be generated by using a web application fuzzer, an

automated predefined list of known attack strings, or manually.
 Some example of such input data are the following:



Testing for Reflected Cross Site 
Scripting: How to Test

 A black-box test will include at least three phases:
 [3]

 For each test input attempted in the previous phase, the tester will
analyze the result and determine if it represents a vulnerability that
has a realistic impact on the web application’s security.

 This requires examining the resulting web page HTML and searching
for the test input.

 Once found, the tester identifies any special characters that were not
properly encoded, replaced, or filtered out.

 The set of vulnerable unfiltered special characters will depend on the
context of that section of HTML.



Testing for Reflected Cross Site 
Scripting: How to Test

 Ideally all HTML special characters will be replaced with HTML
entities.

 The key HTML entities to identify are:



Testing for Reflected Cross Site 
Scripting: How to Test

 Within the context of an HTML action or JavaScript code, a
different set of special characters will need to be escaped,
encoded, replaced, or filtered out.

 These characters include:



Testing for Reflected Cross Site 
Scripting: Example 1

 For example, consider a site that has a welcome notice
“ Welcome %username% “ and a download link.



Testing for Reflected Cross Site 
Scripting: Example 1

 The tester must suspect that every data entry point can result
in an XSS attack.

 To analyze it, the tester will play with the user variable and try
to trigger the vulnerability.

 Let’s try to click on the following link and see what happens:



Testing for Reflected Cross Site 
Scripting: Example 1

 If no sanitization is applied this will result in the following popup:

 This indicates that there is an XSS vulnerability and it appears
that the tester can execute code of his choice in anybody’s
browser if he clicks on the tester’s link.



Testing for Reflected Cross Site 
Scripting: Example 2

 Let’s try other piece of code (link):

 This produces the following behavior:

This will cause the user,
clicking on the link supplied
by the tester, to download
the file malicious.exe from a
site he controls.



Testing for Reflected Cross Site 
Scripting: Example 3

 Since these filters are based on a blacklist, they could not block
every type of expressions.

 In fact, there are cases in which an XSS exploit can be carried
out without the use of <script> tags and even without the use
of characters such as “ < > and / that are commonly filtered.

 For example, the web application could use the user input value
to fill an attribute, as shown in the following code:

 Then an attacker could submit the following code:



Testing for Reflected Cross Site 
Scripting: Example 4

 In some cases it is possible that signature-based filters can be
simply defeated by obfuscating the attack.

 Typically you can do this through the insertion of unexpected
variations in the syntax or in the enconding.

 These variations are tolerated by browsers as valid HTML when
the code is returned, and yet they could also be accepted by the
filter.

 Following some examples:



Testing for Reflected Cross Site 
Scripting: Example 5

 Sometimes the sanitization is applied only once and it is not
being performed recursively.

 In this case the attacker can beat the filter by sending a string
containing multiple attempts, like this one:



Testing for Reflected Cross Site 
Scripting: Example 6

 Now suppose that developers of the target site implemented
the following code to protect the input from the inclusion of
external script:



Testing for Reflected Cross Site 
Scripting: Example 6

 In this scenario there is a regular expression checking if <script
[anything but the character:‘>’ ] src is inserted.

 This is useful for filtering expressions like

which is a common attack.
 But, in this case, it is possible to bypass the sanitization by using the “>”

character in an attribute between script and src, like this:

 This will exploit the reflected cross site scripting vulnerability shown
before, executing the javascript code stored on the attacker’s web
server as if it was originating from the victim web site, http://example/.



Testing for Reflected Cross Site 
Scripting: Example 7

 Another method to bypass filters is the HTTP Parameter Pollution,
this technique was first presented by Stefano di Paola and Luca
Carettoni in 2009 at the OWASP Poland conference. See the
Testing for HTTP Parameter pollution for more information.

 This evasion technique consists of splitting an attack vector
between multiple parameters that have the same name.

 The manipulation of the value of each parameter depends on how
each web technology is parsing these parameters, so this type of
evasion is not always possible.

 If the tested environment concatenates the values of all parameters
with the same name, then an attacker could use this technique in
order to bypass pattern- based security mechanisms.



Testing for Reflected Cross Site 
Scripting: Example 7

 Regular attack:

 Attack using HPP:

 Result expected
 See the XSS Filter Evasion Cheat Sheet for a more detailed list of

filter evasion techniques.
 Finally, analyzing answers can get complex.
 A simple way to do this is to use code that pops up a dialog, as in

our example.
 This typically indicates that an attacker could execute arbitrary

JavaScript of his choice in the visitors’ browsers.



Testing for Stored Cross Site 
Scripting: Summary

 Stored Cross-site Scripting (XSS) is the most dangerous type of
Cross Site Scripting.

 Web applications that allow users to store data are potentially
exposed to this type of attack.

 This chapter illustrates examples of stored cross site scripting
injection and related exploitation scenarios.



Testing for Stored Cross Site 
Scripting: Summary

 Stored XSS occurs when a web application gathers input from a
user which might be malicious, and then stores that input in a
data store for later use.

 The input that is stored is not correctly filtered.

 As a consequence, the malicious data will appear to be part of
the web site and run within the user’s browser under the
privileges of the web application.

 Since this vulnerability typically involves at least two requests to
the application, this may also called second- order XSS.



Testing for Stored Cross Site 
Scripting: Summary

 This vulnerability can be used to conduct a number of browser-
based attacks including:

 Hijacking another user’s browser
 Capturing sensitive information viewed by application users
 Pseudo defacement of the application
 Port scanning of internal hosts (“internal” in relation to the users

of the web application)
 Directed delivery of browser-based exploits
 Other malicious activities



Testing for Stored Cross Site 
Scripting: Summary

 Stored XSS does not need a malicious link to be exploited. A
successful exploitation occurs when a user visits a page with a
stored XSS.

 The following phases relate to a typical stored XSS attack
scenario:

 Attacker stores malicious code into the vulnerable page
 User authenticates in the application
 User visits vulnerable page
 Malicious code is executed by the user’s browser



Testing for Stored Cross Site 
Scripting: Summary

 This type of attack can also be exploited with browser
exploitation frameworks such as BeEF, XSS Proxy and
Backframe.

 These frameworks allow for complex JavaScript exploit
development. Stored XSS is particularly dangerous in application
areas where users with high privileges have access.

 When the administrator visits the vulnerable page, the attack is
automatically executed by their browser.

 This might expose sensitive information such as session
authorization tokens.



Testing for Stored Cross Site 
Scripting: How to Test

 The process for identifying stored XSS vulnerabilities is similar
to the process described during the testing for reflected XSS.



Testing for Stored Cross Site 
Scripting: Input Forms

 The first step is to identify all points where user input is stored
into the back-end and then displayed by the application.

 Typical examples of stored user input can be found in:
 User/Profiles page: the application allows the user to edit/ change

profile details such as first name, last name, nickname, avatar, picture,
address, etc.

 Shopping cart: the application allows the user to store items into the
shopping cart which can then be reviewed later

 File Manager: application that allows upload of files
 Application settings/preferences: application that allows the user to set

preferences
 Forum/Message board: application that permits exchange of posts

among users
 Blog: if the blog application permits to users submitting comments
 Log: if the application stores some users input into logs.



Testing for Stored Cross Site 
Scripting: Analyze HTML code

 Input stored by the application is normally used in HTML tags,
but it can also be found as part of JavaScript content.

 At this stage, it is fundamental to understand if input is stored
and how it is positioned in the context of the page.

 Differently from reflected XSS, the pen-tester should also
investigate any out-of-band channels through which the
application receives and stores users input.

 Note:
 All areas of the application accessible by administrators should be

tested to identify the presence of any data submitted by users.



Testing for Stored Cross Site 
Scripting: Analyze HTML code

 Example: Email stored data in index2.php



Testing for Stored Cross Site 
Scripting: Analyze HTML code

 The HTML code of index2.php where the email value is located:

 In this case, the tester needs to find a way to inject code outside the
<input> tag as below:



Testing for Stored Cross Site 
Scripting: Testing for Stored XSS

 This involves testing the input validation and filtering controls of
the application.

 Basic injection examples in this case:

 Ensure the input is submitted through the application.
 This normally involves disabling JavaScript if client-side security

controls are implemented or modifying the HTTP request with a
web proxy such as WebScarab.

 It is also important to test the same injection with both HTTP
GET and POST requests.

 The above injection results in a popup window containing the
cookie values.



Testing for Stored Cross Site 
Scripting: Testing for Stored XSS

 Result Expected:

 The HTML code following the injection:



Testing for Stored Cross Site 
Scripting: Testing for Stored XSS

 The input is stored and the XSS payload is executed by the
browser when reloading the page.

 If the input is escaped by the application, testers should test the
application for XSS filters.

 For instance, if the string “SCRIPT” is replaced by a space or by a
NULL character then this could be a potential sign of XSS filtering
in action.

 Many techniques exist in order to evade input filters (see testing
for reflected XSS chapter).

 It is strongly recommended that testers refer to XSS Filter Evasion ,
RSnake and Mario XSS Cheat pages, which provide an extensive list
of XSS attacks and filtering bypasses.

 Refer to the whitepapers and tools section for more detailed
information.



Testing for Stored Cross Site 
Scripting: Leverage Stored XSS with 
BeEF

 Stored XSS can be exploited by advanced JavaScript exploitation
frameworks such as BeEF, XSS Proxy and Backframe.

 A typical BeEF exploitation scenario involves:
 Injecting a JavaScript hook which communicates to the attacker’s

browser exploitation framework (BeEF)
 Waiting for the application user to view the vulnerable page where

the stored input is displayed
 Control the application user’s browser via the BeEF console



Testing for Stored Cross Site 
Scripting: Leverage Stored XSS with 
BeEF

 The JavaScript hook can be injected by exploiting the XSS
vulnerability in the web application.

 Example: BeEF Injection in index2.php:

 When the user loads the page index2.php, the script hook.js is
executed by the browser.

 It is then possible to access cookies, user screenshot, user clipboard,
and launch complex XSS attacks.



Testing for Stored Cross Site 
Scripting: Leverage Stored XSS with 
BeEF

 Result Expected



Testing for Stored Cross Site 
Scripting: Leverage Stored XSS with 
BeEF - File Upload

 If the web application allows file upload, it is important to check
if it is possible to upload HTML content.

 For instance, if HTML or TXT files are allowed, XSS payload can
be injected in the file uploaded.

 The pen-tester should also verify if the file upload allows setting
arbitrary MIME types.



Testing for Stored Cross Site 
Scripting: Leverage Stored XSS with 
BeEF - File Upload

 This design flaw can be exploited in browser MIME mishandling attacks.
 For instance, innocuous-looking files like JPG and GIF can contain an

XSS payload that is executed when they are loaded by the browser.
 This is possible when the MIME type for an image such as image/gif can

instead be set to text/html. In this case the file will be treated by the
client browser as HTML.

 HTTP POST Request forged:


	Input Validation Testing
	Testing for Reflected Cross Site Scripting: Summary
	Testing for Reflected Cross Site Scripting: Summary
	Testing for Reflected Cross Site Scripting: Summary
	Testing for Reflected Cross Site Scripting: How to Test
	Testing for Reflected Cross Site Scripting: How to Test
	Testing for Reflected Cross Site Scripting: How to Test
	Testing for Reflected Cross Site Scripting: How to Test
	Testing for Reflected Cross Site Scripting: How to Test
	Testing for Reflected Cross Site Scripting: Example 1
	Testing for Reflected Cross Site Scripting: Example 1
	Testing for Reflected Cross Site Scripting: Example 1
	Testing for Reflected Cross Site Scripting: Example 2
	Testing for Reflected Cross Site Scripting: Example 3
	Testing for Reflected Cross Site Scripting: Example 4
	Testing for Reflected Cross Site Scripting: Example 5
	Testing for Reflected Cross Site Scripting: Example 6
	Testing for Reflected Cross Site Scripting: Example 6
	Testing for Reflected Cross Site Scripting: Example 7
	Testing for Reflected Cross Site Scripting: Example 7
	Testing for Stored Cross Site Scripting: Summary
	Testing for Stored Cross Site Scripting: Summary
	Testing for Stored Cross Site Scripting: Summary
	Testing for Stored Cross Site Scripting: Summary
	Testing for Stored Cross Site Scripting: Summary
	Testing for Stored Cross Site Scripting: How to Test
	Testing for Stored Cross Site Scripting: Input Forms
	Testing for Stored Cross Site Scripting: Analyze HTML code
	Testing for Stored Cross Site Scripting: Analyze HTML code
	Testing for Stored Cross Site Scripting: Analyze HTML code
	Testing for Stored Cross Site Scripting: Testing for Stored XSS
	Testing for Stored Cross Site Scripting: Testing for Stored XSS
	Testing for Stored Cross Site Scripting: Testing for Stored XSS
	Testing for Stored Cross Site Scripting: Leverage Stored XSS with BeEF
	Testing for Stored Cross Site Scripting: Leverage Stored XSS with BeEF
	Testing for Stored Cross Site Scripting: Leverage Stored XSS with BeEF
	Testing for Stored Cross Site Scripting: Leverage Stored XSS with BeEF - File Upload
	Testing for Stored Cross Site Scripting: Leverage Stored XSS with BeEF - File Upload

