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Abstract—Pilot contamination poses a critical challenge for
channel estimation in dense cell-free (CF) distributed multiple-
input multiple-output (CF-DMIMO) wireless networks. State-
of-the-art channel estimation schemes require inversion of a
high-dimensional channel covariance matrix, which is practi-
cally infeasible for dense CF-DMIMO networks owing to the
requirement of large storage and high dimensional computational
complexity. In this work, we investigate channel estimation
problem for a CF-DMIMO network, where both terrestrial and
aerial users are jointly supported by distributed access points.
We formulate the problem of estimating channel coefficients from
the received in-phase/quadrature (I/Q) samples as a non-linear
regression problem and propose two deep-learning aided channel
estimation schemes for the considered network, namely, deep
model-agnostic neural network (DMANN) and deep successive
contamination cancellation (DSCC) schemes. Compared to the
state-of-the-art channel estimation schemes for CF-DMIMO net-
works, the proposed schemes (i) tackle the unavoidable pilot con-
tamination issue in dense CF-DMIMO networks while estimating
the channel gains for both terrestrial and aerial users; (2) does not
require prior knowledge of signal-to-noise ratios; and (3) works
well in the presence of non-Gaussian correlated noise. Simulation
results demonstrate the effectiveness of the proposed schemes
over state-of-the-art channel estimation schemes in various use
cases of the CF-DMIMO networks.

Index Terms—Cell free massive multiple input multiple output,
channel estimation, deep learning, pilot contamination.

I. INTRODUCTION

The cell-centric paradigm of wireless networks, which is
limited by inter-cell interference, is evolving toward a ubiq-
uitous cell-free (CF) architecture that is more user-centric
and robust to interference while providing users with macro-
diversity [1]. In the CF distributed multiple input multiple out-
put (CF-DMIMO) systems, many geographically distributed
access points (APs) employing single or multiple antennas
simultaneously serve a limited number of user equipment (UE)
in a time-division duplex (TDD) scheme with the help of a
fronthaul network and a central processing unit (CPU) operat-
ing in the same time-frequency resource. The CPU transmits
data and resource control information to the APs through the
downlink, while the APs transmit data received from the UEs
using the uplink to the CPU via the fronthaul connection.
CF-DMIMO essentially integrates the best attributes of ultra-
dense networks, coordinated multi-point transmission, and
cellular MIMO, and achieves improved spectral efficiency and
transmission reliability by leveraging robust channel estima-

tion and favorable propagation characteristics arising from the
exploitation of a large number of propagation paths [2]. CF-
DMIMO is therefore a key enabler of the emerging high-
throughput, ultra-reliable, and low-latency applications of sixth
generation (6G) networks [3].

Besides the conventional terrestrial user equipments (TUEs),
6G cellular network is envisioned to support drones equipped
with communication transceivers and sensors, known as aerial
user equipments (AUEs), to facilitate surveillance, remote
sensing and environmental monitoring, real-time multimedia
streaming, and intelligent transportation [4]. In particular,
serving AUEs from the conventional base station or terrestrial
APs along with terrestrial UEs (TUEs) not only efficiently
uses the bandwidth for both terrestrial and aerial UEs but also
offers several advantages to the AUEs, including, improved
channel capacity, ubiquitous coverage, and beyond visual line-
of-sight (VLOS) range of drone operations [5]. However, it is
challenging to transmit high data rate traffic from AUEs, such
as streaming videos, since AUEs can create strong interference
at several neighboring APs due to AUEs’ high elevations and
increased likelihood of establishing LOS paths with a large
footprints. Such high interference can significantly reduce the
achievable data rate of the terrestrial UEs, making coexistence
of TUEs and AUEs a non-trivial problem. CF-DMIMO system
is a promising solution to address the coexistence issues of
AUEs and TUEs, thanks to its macro-diversity gain, central-
ized signal processing, and interference suppression capability.

To maximize the processing gain and interference-
suppressing capability of a massive MIMO (MMIMO) net-
work, accurate channel estimation is required. Note that in any
cellular network, the length of pilot signals is limited and the
number of orthogonal pilots is also finite. Essentially, pilot-
based channel estimation in large-scale MMIMO networks
often exhibits pilot contamination due to the fact of reusing
pilots among multiple antennas [6] or multiple UEs [7].
We emphasize that the channel estimation in the presence
of pilot contamination is an intricate optimization problem.
Conventional optimization methods require inversion of the
entire covariance matrix of the channels to solve such a
channel estimation problem, which requires large signaling
overhead, high computational complexity, and large storage.
Essentially, conventional optimization methods are practically
infeasible for channel estimation in large-scale MMIMO net-
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works, specifically when rapid and frequent estimations of
channel are required due to small channel coherence time. To
address this issue, several deep-learning (DL) enabled channel
estimation methods were developed [8], [9]. However, these
studies considered co-located MMIMO (C-MMIMO) networks
that is fundamentally different from CF-DMIMO networks.
More specifically, different propagation characteristics exhib-
ited by the distributed antennas in CF-DMIMO systems is
not appropriately captured by the DL models trained for C-
MMIMO networks. In [10], a deep unsupervised pilot signals’
power allocation method was developed for minimizing mean
square (MSE) of a linear minimum MSE (LMMSE) based
channel estimation in the distributed MIMO systems. How-
ever, it will be shown in our numerical results that the channel
estimation accuracy of LMMSE based channel estimator is
notably compromised in the presence of pilot contamination.
In [11], a DL based channel estimator was developed for CF-
DMIMO networks by leveraging a denoising convolutional
network. However, the channel estimator developed in [11]
requires prior knowledge of signal-to-noise ratio (SNR) of the
channels to be estimated, which adds additional computational
complexity. As a result, there is a need of near-optimal yet
computationally-inexpensive DL-based channel estimators for
practical CF-DMIMO networks.

In this paper, we investigate the channel estimation problem
for a generalized CF-DMIMO network where both TUEs
and AUEs are simultaneously supported by the distributed
APs over the same spectrum. We consider a dense network
setting where the numbers of AUEs and TUEs are much larger
than the available orthogonal pilots, and therefore, employ
multiplexing of multiple AUEs and TUEs over the same pilot
sequences. However, the resultant pilot contamination severely
affects the accuracy of channel estimation. To address this
issue, we propose two DL-based channel estimation methods
to estimate the channel coefficients directly from the received
in-phase/quadrature (I/Q) samples. More specifically, in the
first method, we employ a single deep neural network to esti-
mate complex channel gains from I/Q samples whereas in the
second method, we merge both DL and successive interference
cancellation to improve the accuracy of channel estimation.
Compared to state-of-the-art channel estimation schemes, our
proposed DL methods have the following attributes. First, our
proposed DL methods improve channel estimation accuracy
in severe pilot contamination without prior knowledge of
channel SNRs. Second, our proposed method does not require
estimation and inversion of the high-dimensional channel cor-
relation matrix, thus alleviates both computational complexity
and signaling overhead. Finally, the proposed methods also
efficiently estimate channels in the presence of non-Gaussian
correlated noise, and consequently, the proposed channel esti-
mation methods can be useful in many emerging applications
of CF networks, such as industrial Internet-of-Things (I-IoT),
smart grid, and cyber-physical systems where non-Gaussian
noise can appear. We also emphasize that the proposed DL
approaches are applicable to conventional CF-DMIMO net-
works with only TUEs. Simulation results confirm that our
proposed DL approaches achieve near-optimal performance
and outperform the conventional channel estimation methods.

The rest of the paper is organized as follows. Section II

Fig. 1: CF-DMIMO System Model.
describes the considered system model. The proposed data
driven estimation schemes are discussed in Section III. The
simulation results are presented in Section IV and Section V
concludes the paper.

II. SYSTEM MODEL

We consider a uplink CF-DMIMO system, where L APs
are uniformly distributed over a large geographical area to
provide coverage to Kt and Ka single-antenna TUEs and
AUEs, respectively. Each AP is equipped with N antennas;
hence, T = NL represents the total number of AP antennas
in the considered CF network. We assume T ≫ K, where
K = Kt +Ka to provide the network with large degrees-of-
freedom (DoF) so that the UEs can be segregated in space by
applying signal processing techniques on transmit and receive
signals. We intend to keep N small and hence L ≫ K holds
to realize CF communications. Each UE is communicated
via a subset of APs, and an AP may serve more than one
UEs simultaneously via appropriate AP cooperation while
satisfying the network quality-of-service (QoS) requirements.
We assume that the APs leverage sub-6 GHz spectrum to
communicate with UEs; however, this assumption can be ex-
tended to millimeter-wave (mmW) and tera-hertz (THz)-band
transmissions by appropriate modifications of the considered
system model. A high capacity ideal fronthaul communication
link, such as optical fiber, is deployed between each AP
and CPU. The CPU is usually hosted in the edge cloud
platform, and thereby provides high performance computing
and centralized signal processing for a large number of UEs’
data.

Each UE transmits a pilot sequence ϕq , q ∈ {1, 2, · · · , τp}
of τp samples that satisfy

ϕH
q1ϕq2 =

{
τp q1 = q2
0 q1 ̸= q2

(1)

and ||ϕq||2 = τp, where (·)H denotes the Hermitian operation.
Moreover, we assume τp ≤ τc, where τc is the length (in
samples) of coherence block. In general, K ≫ τc for a
CF configuration. Therefore, τp orthogonal pilot sequences
cannot completely eliminate the pilot contamination for the
CF system. As more than one TUE or AUE can be assigned
with the same pilot sequence, let us denote the index of
the pilot sequence assigned to UE k, k = 1, 2, · · · ,K by
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qk ∈ {1, 2, · · · , τp} and define Sqk as the set of UEs that use
the same pilot sequence qk. We define Pk as the transmit power
for UE k ∈ {1, 2, · · · ,K} during the uplink pilot transmission
phase. The signal received at AP l ∈ {1, 2, · · · , L} during the
pilot transmission phase is represented as follows:

Y l=

Ka∑
ka=1

√
Pka

hkalϕ
T
qka

+

Kt∑
kt=1

√
Pkt

hktlϕ
T
qkt

+N l, (2)

where N l ∈ CN×τp is the noise at AP l with complex-
valued and independent and identically distributed (i.i.d) el-
ements with zero-mean and variance σ2

n, and (·)T presents
the transpose operation. Here, hkal = [h1

kal
, h2

kal
, · · · , hN

kal
]T

presents channel vector for the link between AUE ka ∈
{1, 2, · · · ,Ka} and AP l ∈ {1, 2, · · · , L}. Likewise, hktl =
[h1

ktl
, h2

ktl
, · · · , hN

ktl
]T presents channel vector for the link

between TUE kt ∈ {1, 2, · · · ,Kt} and AP l ∈ {1, 2, · · · , L}.
The channel gain hn

kil
, for i ∈ {a, t} and n ∈ {1, 2, · · · , N}

contains both small and large scale fading components depend-
ing on the propagation environments. The ensuing analysis is
valid for any suitable channel models of AUEs and TUEs.
For simplicity, we consider that channel gains are temporally
uncorrelated. The baseband signal received at CPU from AP
l over ideal fronthaul link can be represented as

Zl = Y l +W l, (3)
where l ∈ {1, 2, · · · , L}. Here, W l presents a quantization
noise matrix, where each element is complex-valued and i.i.d.
and can be represented with zero-mean and variance σ2

w.

III. DATA DRIVEN CHANNEL ESTIMATION

In order to estimate the channel hkil, i ∈ {a, t} based on
Zl, the received signals from the TUEs and AUEs reusing
the pilot sequence qk are extracted as zqkl = Zlϕ

∗
qki

/
√
τp.

Hence, zqkl is expressed as
zqkl =

√
Pkτphkil +

∑
m∈Sqk

,m̸=ki

√
Pmτphkml + nqkl +wqkl. (4)

The estimation of channel gains, hkil, ∀i ∈ {a, t} and
l ∈ {1, 2, · · · , L}, from zqkl is formulated as a non-linear
regression problem, ĥkil = F(zqkl), where F(·) is the
channel estimation function. Leveraging universal approxima-
tion theorem, F(·) can be approximated by a parameterized
neural network (NN). Towards this end, we propose two data-
driven channel estimation approaches, namely, a) deep model-
agnostic neural network (DMANN) and b) deep successive
contamination cancellation (DSCC). In both schemes, the
signals received at the CPU are exploited for joint channel
estimation of all the communication links between APs and
TUEs/AUEs. Therefore, the burden of computational com-
plexity is transferred from all APs to CPU, where NN(s)
is trained offline on the computationally intensive power-
ful servers. The trained model is deployed online for joint
estimation of all the corresponding channels at CPU. It is
worth pointing out that DMANN scheme aims at estimating
multiple channels simultaneously using a single deep NN.
Meanwhile, DSCC scheme successively estimates the channels
of the participating UEs sharing the same pilot signals by
iteratively cancelling interference caused by pilot contamina-
tion. Essentially, DMANN scheme requires a straightforward
implementation whereas DSCC scheme is a high-performance

yet more complex channel estimation scheme for CF-DMIMO
networks.

A. DMANN Based Channel Estimation

1) NN Model: DMANN scheme is trained by considering
zqkl and hkml, m ∈ Sqk , as the model’s input and output in a
supervised learning approach for estimating the channels be-
tween the l-th AP and the km-th UE, where l ∈ {1, 2, · · · , L}
and km ∈ Sqk . A fully-connected deep NN is created with IM
features, OM labels, GM hidden layers, and Ng neurons in
each hidden layer g ∈ {1, 2, · · · , GM}. We set IM = 2N and
OM = 2⌈K/τp⌉N . Here, ⌈·⌉ denotes the ceiling operation.
The reason for incorporating a scaling factor 2 (in defining
IM and OM ) is that we separate the real and imaginary parts
of the signals involved in input (received signals) and output
(channel gains).

2) Offline Training: We consider U and V as the total
numbers of epoch for training and the numbers of batches
in each training epoch, respectively. Let us denote Zu =
[Re{zu

qkl
}, Im{zu

qkl
}]T , for qk ∈ {1, 2, · · · , τp}, k ∈ Sqk ,

and l ∈ {1, 2, · · · , L} as the input training symbols for
epoch u ∈ {1, 2, · · · , U}, where Re(x) (Im(x)) represents
the real (imaginary) part of complex variable x. Likewise, the
corresponding channel gains Hu = [Re{hu

kml}, Im{hu
kml}]T ,

for m ∈ Sqk are set as the output training symbols for epoch
u ∈ {1, 2, · · · , U}. It is worth mentioning that the training
symbols can be generated using Monte Carlo simulations by
leveraging (4) and the accurate statistical distributions of the
underlying random variables or by the data collected from
controlled experiments in lab environment or in live networks.

We define the set of parameters for the deep NN block as
ηg = {αg,βg} for a given hidden-layer g ∈ {1, 2, · · · , GM},
where αg and βg denote the weights and bias factors, respec-
tively. The estimation of Hu is therefore obtained as
Ĥu = fGM

(αGM
fGM−1 (· · · f1 (α1Zu + β1) · · · ) + βGM

)
(5)

where fg(·) is the activation function at the g-th hidden layer,
∀g. The optimal set of parameters of the DMANN model are
obtained as

η∗ = argmin
η

E
{∣∣∣∣∣∣Hu − Ĥu

∣∣∣∣∣∣2} , (6)

where E {·} and ||·|| represent the statistical expectation and
L2-norm operations, respectively. We deploy the hyperbolic
tangent activation function at the output layer for the con-
sidered regression problem [12], and optimize (6) with the
assistance of the training datasets Zu and Hu while using
stochastic gradient decent approach and the back propagation
algorithms (e.g., Adam optimizer) [12].

3) Online Estimation: The trained DMANN model is de-
ployed online for real-time channel estimation. In particular,
{zqkl[n]}, where n ∈ {1, 2, · · · }, is fed online to the trained
DMANN block and the estimated channel gains {ĥkml[n]} of
all the available links of the considered network are obtained
at the output layer of the trained DMANN block.

B. DSCC Based Channel Estimation

This data driven scheme leverages the idea behind succes-
sive interference cancellation (SIC) and sequentially removes
the pilot contamination while exploiting the knowledge of
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Fig. 2: DMANN Channel Estimation Model.

UEs responsible for pilot contamination. Unlike DMANN, we
consider J = ⌈K/τp⌉ deep NN blocks for DSCC scheme
enabled channel estimation. A fully-connected network is
created for each deep NN block with IS features, OS labels,
GS hidden layers, and Ng neurons in each hidden layer
g ∈ {1, 2, · · · , GS}, where we set IS = 2N and OS = 2N
for each NN.

1) Offline Training: Defining the NN block for DSCC
as Dj , j ∈ {1, 2, · · · , J}, the input and output training
symbols in a given epoch u ∈ {1, 2, · · · , U} can be de-

noted as [Re
(
zu
qkl

−
j−1∑̃
j=1

hu
kj̃ l

)
, Im

(
zu
qkl

−
j−1∑̃
j=1

hu
kj̃ l

)
]T and

[Re{hu
kj l}, Im{hu

kj l}]
T , respectively. We follow the similar

steps in setting the number of parameters for each deep NN
as described for DMANN scheme.

2) Online Estimation: The trained Dj , ∀j ∈ {1, 2, · · · , J},
are fed with {zqkl[n]}, n ∈ {1, 2, · · · } online and yield the
estimated channel gains {ĥkml[n]}.

C. Computational Complexity
The offline training computational complexity of DMANN

depends on the complexity of matrix multiplications in (5) for
both forward and backward propagation, and it is obtained as
O
(
2
(
2NN1 + 2⌈K/τp⌉NNGM

+
∑GM−1

g=2 Ng−1Ng

)
UV

)
.

Likewise, the computational complexity of DSCC
in the (offline) training phase is obtained as
O
(
2J

(
2NN1 + 2NNGS

+
∑GS−1

g=2 Ng−1Ng

)
UV

)
.

Meanwhile, the computational complexity of both
schemes during testing or real-time communications
phase depends only on the forward propagation. Thus, the
testing computational complexity of DMANN is obtained
as O

(
2NN1 + 2⌈K/τp⌉NNGM

+
∑GM−1

g=2 Ng−1Ng

)
.

Similarly, the testing computational complexity of DSCC is
obtained as O

(
J
(
2NN1 + 2NNGS

+
∑GS−1

g=2 Ng−1Ng

))
.

The time complexity of the trained NNs in both DMANN
and DSCC schemes is linearly increased with L.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the DMANN
and DSCC channel estimation schemes for different use cases
of the considered CF architecture by Monte Carlo simulations.
We adopt a normalized mean-square error (NMSE) perfor-
mance metric to represent the accuracy of channel estimation
schemes. To compare the comparative performances, we con-
sider two baseline schemes; a) least square (LS) and b) linear

Fig. 3: DSCC Channel Estimation Model.

minimum mean square error (LMMSE) schemes. It is worth
mentioning that LS and LMMSE schemes exhibit low com-
plexity and high estimation accuracy, respectively. Throughout
this section, we generate 106 realizations of dataset for training
the proposed deep NNs. Moreover, another 106 realizations of
dataset are produced to evaluate the NMSE performances of
the proposed and baselines estimation schemes. For both train-
ing and testing dataset generation processes, we simulate a CF-
DMIMO network with the following setting. In particular, we
consider N = 1 and τc = 200 all throughout the simulations
with different L, K, and τp. We assume that APs are randomly
deployed in an urban environment (with a path loss exponent
of 3.67, which can be different in different environmental
settings) with independent and uniform distribution to serve
TUEs and AUEs jointly. Therefore, the large scale path loss
can be expressed as 30.5+36.7 log10(de/1 km) as a function
of effective distance de, when the operating carrier frequency
is 2 GHz [13, Eq. (2.16)]. Here, de =

√
d2h + d2v , where

dh and dv represent the horizontal and vertical distances,
respectively between two communication nodes, e.g., AP and
TUE, AP and AUE, etc. We consider that all the APs are 10m
above the ground level, on average. The AUEs are assumed to
be hovering above the ground level with a mean height of 30m.
The TUEs and AUEs are randomly deployed in a network
area. The system operates over 20 MHz bandwidth and the
noise floors at APs and CPU are −96 dBm and −126 dBm,
respectively. The small-scale channel fading gain between the
APs and TUEs follows i.i.d. Rayleigh distribution with zero
mean and unit variance. Furthermore, the channel fading gain
between the APs and AUEs follows i.i.d. Rician distribution
with a Rice factor of 10 dB.

We leverage the DL toolbox of MATLAB to create the NN
models, train them, and evaluate the trained (inference) models
for the proposed DMANN and DSCC schemes. We consider
three hidden-layers in each of the considered NN with 200
neurons in each hidden-layer. For all the demonstrated results,
we incorporate Adam optimizer and set 1000 epochs with 64
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Fig. 4: NMSE vs. relative size of training dataset.

batches in each epoch [14].

A. Impact of Training Dataset on Proposed Schemes
In Fig. 4, we demonstrate the effect of training dataset in the

proposed DMANN and DSCC schemes. For this purpose, we
set L = 10, K = 3 (Kt = 2 and Ka = 1), and τp = 1.
The transmit powers of TUE-1, TUE-2, and AUE are set
to 0 dB, -20 dB, and -20 dB, respectively. We assume that
the underlying noises at APs and CPU are Gaussian. All the
participating UEs are 10m apart from AP on the horizontal
plane. We evaluate the performance of channel estimation
schemes for TUE-1 at CPU in the presence of TUE-2 and
AUE, where all the users share the same pilot signal. In this
figure, we show the NMSE performances of DMANN and
DSCC schemes as a function of relative size (normalized)
of training datasets, where the maximum size of the dataset
is 106. Moreover, we also include the NMSE performance
of LMMSE scheme, which is not a function of the training
dataset. We observe that the NMSE of both DMANN and
DSCC schemes decreases with the increasing size of training
data set. Such an observation exemplifies the importance of
accurate dataset-size to achieve competitive performances of
the proposed data-driven schemes.

B. Comparison with Conventional Estimation Schemes
In Fig. 5, we show the effectiveness of pilot decontamination

by the proposed channel estimation algorithms. We set L = 10
and K = 3 (Kt = 2 and Ka = 1). We denote the considered
user equipment as TUE-1, TUE-2, and AUE. The transmit
powers of TUE-2 and AUE are set same (at the transmitters)
and considered as the interference power σ2

I while estimating
channels for TUE-1. The underlying noises at APs and CPU
follow Gaussian distribution. We assume that the horizontal
distances from AP and TUE-1, TUE-2, and AUE are 2m,
10m, and 3m, respectively. We demonstrate the average NMSE
(averaged over all the considered APs) of the proposed and
baseline channel estimation schemes at the CPU for TUE-1
as a function of σ2

I . We consider two scenarios (Scenario A
and Scenario B). In Scenario A, we consider τp = 3; hence,
the pilot signals are judiciously allocated among all the users

-25 -20 -15 -10 -5 0 5 10
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-40

-30

-20
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0

10

20

N
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 (
d

B
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LMMSE (PC)

LS (PC)

DMANN (NPC)

DSCC (NPC)

LMMSE (NPC)

LS (NPC)

No Pilot Contamination

With Pilot Contamination

Fig. 5: NMSE vs. interference power.

to make sure no pilot signals are shared between two or more
users. Scenario B considers that a single pilot signal (τp = 1) is
shared among TUE-1, TUE-2, and AUE for channel estimation
purpose. In Fig. 5, Scenarios A and B are denoted by phrases
“NPC” and “PC”, respectively. Our objective is to investigate
the performance of channel estimation by one of the TUEs in
the absence and presence of pilot contamination and thereby
to demonstrate the effectiveness of the proposed DL schemes
compared to conventional LS and LMMSE algorithms.

Fig. 5 demonstrates that NMSE for TUE-1 increases with
increasing interference power from TUE-2 and AUE. We
observe that the proposed DSCC scheme outperforms other
considered schemes (LMMSE, DMANN, and LS) for Scenario
B. This is because that the SIC approach in DSCC scheme
systematically addresses the pilot contamination introduced
by co-channel interference and nullify them. More specifi-
cally, the presence of LOS path between the AUE and AP
results in the strong air-to-ground interference at the APs,
leading to severe pilot contamination. We emphasize that the
LMMSE does not have any interference rejection capability,
and consequently, the co-channel interference introduced pilot
contamination significantly degrades the LMMSE scheme’s
channel estimation accuracy compared to efficiently learned
DSCC scheme. In contrast to Scenario B, we observe that
the NMSE performance of DSCC and DMANN schemes
are similar to LMMSE scheme for Scenario A, where there
is no pilot contamination. Such an observation is expected
since the LMMSE channel estimator is optimal over Gaussian
distributed noise without any pilot contamination. However,
LMMSE scheme not only requires the covariance matrix of
the underlying MIMO channels to be known a priori but also
has a high computational complexity of O

(
N3L3

)
due to

the inversion of covariance matrix. In contrast, the real-time
computational complexity of DL-based schemes is linearly
scaled with L. In essence, our proposed DL approaches are
efficient compared to both LMMSE and LS channel estimation
schemes regardless of the presence of pilot contamination in
the system.
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Fig. 6: NMSE vs. average distance between TUE and AP.

C. Performance in Non-Gaussian Noise

In Fig. 6, we demonstrate the performance of the proposed
DMANN and DSCC schemes in the presence of non-Gaussian
noise and interference. We consider two cases (Case 1 and
Case 2) in this experiment. In Case 1, we assume that the APs
are corrupted with ϵ-mixture Gaussian noise, which follows a
heavier than Gaussian tail [15], [16]. In Case 2, we assume
that all APs are corrupted with additive white Gaussian noise
(AWGN). We set parameters ϵ = 0.10 and κ = 50 for ϵ-
mixture noise. It is worth mentioning that ϵ represents the
fraction of the transmission duration when the impulsive noise
component is active and κ denotes the ratio of the variances
of impulsive to Gaussian noise components. Therefore, the
smaller the ϵ and higher the κ, the more impulsive the noise
is. In this figure, we consider L = 10, K = 2 (Kt = 1
and Ka = 1), and τp = 2 (hence no pilot contamination)
and demonstrate the NMSE to estimate the channel gain for
TUE averaged over all the communication links. We set the
average distance between TUE and all APs as 10m and change
the average distance between APs and AUE to demonstrate
NMSE performance of the proposed and LMMSE schemes.
The performances of Case 1 and Case 2 are shown in the
upper and lower sub-figures of Fig. 6, respectively.

We emphasize that channel estimation in non-Gaussian
noise is a strong non-linear non-convex optimization problem,
and cannot be optimally solved via LS or LMMSE methods.
In this context, the proposed data driven approaches efficiently
learn the system dynamics, thanks to the high-dimensional
non-linearity of the NN. Essentially, in the presence of non-
Gaussian noise, both DMANN and DSCC schemes noticeably
outperform LMMSE scheme as depicted by the first sub-figure
of Fig. 6. In contrast, since LMMSE is optimal for Gaussian
noise, the NMSE of the proposed DL approaches and LMMSE
coincide with each other as depicted from the second sub-
figure of Fig. 6. Overall, the proposed DL schemes are efficient

in estimating channels of the CF architecture in the presence
of pilot contamination and/or non-Gaussian noise with low
run-time complexity.

V. CONCLUSION

We developed two DL-enabled channel estimation schemes
for CF-DMIMO networks. The NNs of the proposed schemes
are trained offline with a large dataset considering different
use-cases. The trained DL models are deployed online for
real-time channel estimation and do not require the covari-
ance matrix of high-dimensional MIMO channels and channel
SNRs to be known as a priori. In the absence pilot con-
tamination with Gaussian noise, the proposed DMANN and
DSCC schemes achieve same NMSE performances similar
to the conventional LMMSE scheme with low computational
complexity, whereas the DSCC scheme outperforms LMMSE
scheme in the presence pilot contamination. The proposed
DL schemes also noticeably outperform the LMMSE scheme
when the underlying noise is non-Gaussian.
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