
Deep Reinforcement Learning-Based Data Download
Scheduling Algorithm for Internet of Drones Systems

Image Bhattarai Cong Pu
Department of Computer Science, Oklahoma State University, Stillwater, OK, USA

Email: image.bhattarai@okstate.edu, cong.pu@ieee.org

Abstract—The Internet of Drones (IoD) paradigm has noticed a
growing demand for efficient and sustainable operations manage-
ment, with a particular emphasis on service request scheduling.
As IoD systems become widespread in various domains, such as
ecological surveillance, facilities evaluation, etc., it is crucial to
efficiently manage and prioritize the execution of drones’ data
download requests at the ground stations. Due to the unique
characteristics of IoD systems, e.g., high drone density and
mobility, limited ground station communication range and energy
resources, and substantial deployment and maintenance cost,
how to enable the ground stations to scalably, intelligently, and
optimally answer drones’ data download requests concurrently
has become a challenging issue. In this paper, we propose a deep
reinforcement learning-based data download request scheduling
mechanism (hereafter referred to as DrDre), enabling ground
stations to plan and execute received data download requests
from drones in a scalable, intelligent, and optimal manner.
DrDre takes into account various scheduling parameters such
as request deadline, request urgency, request priority, requested
data size, and data popularity when making scheduling decisions.
In addition, DrDre exploits the deep reinforcement learning
and deep Q-learning frameworks to formulate the dynamic IoD
environment into a Markov Decision Process (MDP) model and
enable ground stations to learn an optimal scheduling policy in
order to maximize cumulative rewards over time, respectively.
We conduct extensive and comparative simulation-based exper-
iments in a customized simulation environment using SUMO
and Python. Simulation results show that DrDre outperforms
the selected benchmark schemes in terms of request satisfaction
rate, request fulfillment latency, the amount of downloaded data,
and the number of incomplete requests.

Index Terms—Data download request, scheduling, Internet of
Drones, deep reinforcement learning, Q-learning.

I. INTRODUCTION

The rise of unmanned aerial vehicles, also widely known as
drones, has brought forth a transformative change across var-
ious domains. For instance, not only can drones be developed
to transport passengers within urban areas (e.g., air taxis) [1],
but they can also be used to revolutionize the way goods are
delivered (e.g., aerial delivery) [2]. Leveraging the paradigm
of Internet of Drones (IoD) [3], an aerial-ground cohesive
ecosystem can be established, where drones communicate with
ground stations and act upon directives issued by the system
operator. By capitalizing on the seamless connectivity between
aerial and ground networks provided by the IoD paradigm,
drone-based civilian and government applications can achieve
higher levels of automation and boost productivity.

This work was supported by the National Science Foundation (NSF)
through SaTC under Award 2333777.

In the third decade of the 21st century, the IoD technology
has already been employed to revolutionize urban landscapes
through the implementation of smart city initiatives by the U.S.
government. In early 2021, NASA proposed the Advanced Air
Mobility (AAM) Mission [4], which strives to revolutionize
communities by shifting the transportation of people and
goods from the ground to the skies, available on demand.
In this AAM initiative, NASA takes the responsibilities of
supplying essential data to steer the progress of the electric air
taxi and drone industry, and supporting the Federal Aviation
Administration (FAA) in securely incorporating these aircraft
into the national airspace. To pave the way for this flourishing
aerial industry by 2030, the IoD-specific research challenge
like service request scheduling needs to be addressed promptly.
First, drones move at a high velocity (e.g., around 35-60
mph for commercial drones) and the communication range of
ground stations is limited (e.g., about 12-19 miles for cellular
networks), thus, the drones’ data download requests are always
subject to a firm deadline (i.e., it takes approximately 20
minutes for a commercial drone to fly over a ground station).
Second, owing to their expanding applications across different
sectors, advancements in sensing and connectivity technology,
and regulatory adjustments that support their use, the drone
density within the ground stations’ communication range con-
tinue to rise. As a result, a high volume of data download
requests might become a concern, and how to prioritize
fulfilling data download requests to prevent bottlenecks and
ensure timely transmission of requested data will be critical
to the overall performance of scheduling. Third, drones may
request data for various applications, each with distinct quality
of service (QoS) requirements. For example, delivery drones
may request weather information for trajectory planning and
execution, while drone taxis may request pickup time, arrival
time, and route lines to create real-time experiences for pas-
sengers. Therefore, the scheduling algorithm should plan and
serve various data download requests based on their distinct
QoS needs. Although densely deploying ground stations can be
a viable solution for all above-mentioned challenges, it incurs
substantial implementation and running costs.

During the past few years, a variety of scheduling al-
gorithms have been proposed to enhance the efficiency of
data downloading, ensuring efficient and reliable data ex-
change. Unfortunately, the existing techniques either ignore
the dynamic nature of the IoD systems or are not subject
to strict IoD system constraints. For example, Pu et al. [5]



propose a scheduling algorithm that calculates the priority
of each service request using multi-attribute decision making
theory for IoD systems. However, Pu et al.’s approach only
focuses on making an optimal scheduling decision at the
specific moment without considering how these scheduling
decisions could affect and influence future events. In [6],
[7], the authors propose machine learning-based scheduling
algorithms to optimize power consumption and reduce envi-
ronmental emissions for smart grid networks. Nevertheless,
these scheduling algorithms specifically designed for elec-
tricity networks are not well-suitable for IoD networks due
to the fundamental differences between these two systems.
Non-static topology, finite communication range, and dynamic
communication conditions complicate the design of scheduling
algorithms in the IoD environment.

Driven by the preceding discussion, in this paper we propose
a deep reinforcement learning-based data download request
scheduling mechanism (hereafter referred to as DrDre) to
enable ground stations to plan and execute received data
download requests from drones in a scalable, intelligent, and
optimal manner. The basic idea is that DrDre exploits the deep
reinforcement learning and deep Q-learning frameworks to for-
mulate the dynamic IoD environment into a Markov Decision
Process (MDP) model and enable ground stations to learn an
optimal scheduling policy in order to maximize cumulative re-
wards over time, respectively. In addition, multiple scheduling
parameters, such as request deadline, request urgency, request
priority, requested data size, and data popularity, that affect
the action space are taken into account to build the system
state. To evaluate the performance of DrDre, we conduct
extensive and comparative simulation-based experiments in a
customized simulation environment using SUMO and Python.
According to the simulation results, our approach DrDre
has demonstrated superior performance in terms of request
satisfaction rate, request fulfillment latency, the amount of
downloaded data, and the number of incomplete requests,
while comparing with the selected benchmark schemes.

The rest of the paper is organized as follows. We review
relevant related works in Section II. Next, we introduce our
approach DrDre in Section III. Subsequently, we present the
analysis of the experimental results in Section IV. Finally, we
conclude the paper in Section V.

II. RELATED WORK

Over the last several years, there have been numerous
scheduling schemes proposed for various systems. In [8],
the authors leverage the ant colony optimization approach to
optimize scheduling in cloud environments. They assign each
task to a virtual machine with minimal execution cost and idle
time, and utilize a weighted rank model to adjust deadlines
and minimize execution costs. Although their work can reduce
execution cost, the complexity of the ant colony optimization
algorithm is not properly taken into account, where multiple
iterations and updates are required to simulate the behavior
of ants in nature. Moreover, the weighted rank model requires
fine-tuning parameters that involve the detailed knowledge and
resources of the system, which makes it impractical for general

use. The authors in [9] address the network congestion issues
in the Internet of Things (IoT) systems. The dueling double
deep Q-network and bidirectional long short-term memory
network are used to assign IoT devices to edge servers
and process historical assignment data, respectively. However,
the proposed solution assumes that the IoT system exhibits
stable and static behavior, which is unrealistic in a real-world
scenario. Additionally, frequently aggregating and transmitting
model updates to the cloud can cause bottlenecks in the
edge-cloud communication links. In [10], a task scheduling
algorithm is proposed for small independent tasks that require
parallel execution in the IoT environment, where a multi-
objective function is used to model execution time, cost, and
failure rate. Moreover, the proposed algorithm relies on the
grey wolf algorithm to balance both exploration and exploita-
tion in the search space in order to achieve better solutions.
The weakness of this approach, however, is that the size of the
search space increases after each iteration. This is because it
contains multiple solutions requiring pairwise comparison and
evaluation of the fitness function. As a result, the proposed
approach becomes computationally expensive and less efficient
for real-time scheduling applications.

The authors in [11] focus on communication and computa-
tion overhead challenges existing in the Internet of Vehicles
(IoV) environment. They implement the federated learning
in the IoV, where the interconnected vehicles can collabo-
ratively train generative adversarial network models without
transferring raw data. In addition, they choose a deep de-
terministic policy gradient reinforcement learning algorithm
to optimally select participating vehicles for each aggregation
round. However, since the federated learning requires multiple
iterations of uploading distributed updates and downloading
the aggregated model, the proposed approach necessitates a
high bandwidth requirement, making it impractical for IoV
networks with limited bandwidth. In [12], the authors in-
troduce a resource scheduling algorithm to distribute tasks
to mobile edge computing (MEC) nodes efficiently, priori-
tizing reducing energy consumption and network latency to
distribute tasks to mobile edge computing (MEC) nodes.
While the proposed scheduling algorithm focuses on energy
consumption and network latency, other critical aspects, such
as fair resource allocation and task priority, are not taken into
account. In [13] , a UAV-assisted task scheduling algorithm
is introduced to allow users to offload their tasks to the UAV
for processing based on their task priorities while meeting
diverse service requirements. To achieve its overall objective,
the authors use the K-means algorithm to cluster users into
different groups based on task priority and location, and
deploy the genetic algorithm to optimize UAV scheduling
and task offloading. Since the genetic algorithm iteratively
solves task offloading and scheduling problems separately,
the computational complexity of the proposed algorithm is
relatively high. Furthermore, fair scheduling is missing as the
proposed algorithm prioritizes tasks with high priority, leading
to possible starvation of lower-priority tasks.

In summary, even though there has been significant research



Fig. 1. System model.

conducted on applying scheduling to similar environments
such as IoV and IoT, the existing solutions have certain areas
that require further improvement. These outlined areas for
enhancement emphasize the research gap in the realm of IoD
and necessitate a novel scheduling approach. Thus, in this
paper we present a deep reinforcement learning algorithm
to schedule the IoD data download request from drones in
a scalable, intelligent, and optimal manner. The proposed
research work will be crucial to the IoD community and will
act as a building block for future research efforts.

III. THE PROPOSED APPROACH

A. System Model

The system model for our approach DrDre is shown in Fig.
1, where a group of drones (e.g., the ith drone is denoted as
Di) fly past the communication range of the ground station
Gk. In the proposed system, time is divided into a sequence
of consecutive service windows, e.g., the jth service window
is represented as ωj . ωj is further split into two sequential
sub-windows: request reception ωrec

j and service execution
ωexe
j sub-windows. During ωrec

j and ωexe
j , Gk will receive

and satisfy data download requests from drones, respectively.
In order to notify newly arriving drones that they can still
submit data download requests, Gk continuously broadcasts
beacon messages within ωrec

j . We assume that Di is equipped
with a global positioning system and inertial measurement
units to track its trajectory information (e.g., current location
as well as moving speed and direction), and the trajectory
information enables Di to estimate the deadline of its data
download requests. Here, the deadline is the time when Di

flies out of the communication range of Gk. We also assume
that Di flies at a constant speed along a predetermined route
within the communication range of Gk. During ωexe

i , Gk starts
satisfying the received data download requests from drones
based on the scheduling policy learned from our approach
DrDre. If Gk cannot satisfy Di’s data download request before
the deadline, the request will be discarded.

B. Overview of Our Approach DrDre

The basic idea of our approach DrDre is that, when Di

enters the communication range of Gk, it submits a data
download request piggybacked with its identifier, data ID,
data size, and request deadline if ωrec

j is still active. At the
beginning of ωexe

j , Gk counts the number of data download
requests piggybacked with the same data ID, and this number
will indicate the popularity of the requested data. Thereafter,
Gk calculates the urgency and priority for each received data

download request ,and feeds the request deadline, request ur-
gency, request priority, requested data size, and data popularity
to the deep reinforcement learning framework. In the DrDre,
the dynamic IoD environment is formulated into a Markov
Decision Process (MDP) model, which will be used by the
deep Q-learning framework to learn the optimal scheduling
policy. The scheduling parameters such as request deadline,
request urgency, request priority, requested data size, and data
popularity enable Gk to capture the dynamics of the IoD
network during each time step, thereby helping to define the
state space of the MDP model. Gk evaluates the current state,
takes an action from its action space, and moves to a new
state. Based on the outcomes (e.g., request satisfaction or
discard) of its action, Gk either receives a positive reward
or a negative reward. Gk’s objective is to learn the most
optimal scheduling policy to maximize the cumulative reward.
A more detailed discussion of the MDP model is given in
the following subsection. In summary, through continuous
optimization, Gk can eventually improve the performance of
scheduling operations.

C. Data Download Request Scheduling

When ωrec
j is active, Gk broadcasts beacon messages pe-

riodically to inform nearby drones about the availability of
the request reception service. Any drone who is interested in
requesting data download service from Gk can send a data
download request packet Rq = (Di, Dataid, DLi, Ds), where
Di represents the unique identifier for the ith drone, Dataid
indicates the data item the drone is interested in, DLi is
the data download request deadline, and Ds is the size of
the requested data. When ωexe

i begins, Gk prepares the five
scheduling parameters that are to be used in our approach
DrDre. First, Gk tracks how many times each data ID Dataid
appears in received requests and uses this count to measure
data popularity Popid. Next, Gk determines the priority Prii
for each data download request. Prii is calculated as Prii =
1
Bi

, where Bi is the residual battery percentage for drone Di.
Drones with lower residual battery percentages are prioritized
over those with higher percentages, as they may not reach
the next ground station in time for requesting data download
services. Finally, Gk calculates the request urgency Ui as Ui

= (α · 1
DLi

+ β · Popid + λ Prii). α, β, and λ represent the
weights assigned to the request deadline, data popularity, and
priority, respectively. Here, the request urgency increases with
smaller deadlines, more frequently requested data items, and
lower battery percentages.

To find the optimal scheduling decision, our approach
DrDre formulates the dynamic IoD environment as a Markov
Decision Process (MDP) model. The MDP model comprises
an agent, represented by Gk, that is responsible for schedul-
ing data download requests from multiple drones within its
communication range. At every point in time t, Gk observes
the current system state st, which includes information such
as the number of received data download requests, the sizes
of requested data, the request deadline, urgency, and priority.
Gk then chooses an action at which causes the system to



transition to a new state st+1. Here, the action at is selected
from the action space and denotes satisfying the data download
request from the ith drone Di. Upon moving onto the new
state, Gk either receives a positive reward or a negative reward,
based on the outcome of its action. For instance, when a
data download request with a higher priority is satisfied, Gk

receives a positive reward. Conversely, if a data download
request with a lower priority is served, or a data download
request cannot be served before the deadline, Gk receives
a negative reward. The goal of Gk is to discover the most
optimal policy that maximizes long-term cumulative rewards
for the IoD environment.

1) State Space (Observations) / Input from Environment:
At t, Gk is fed the system state st as input. Suppose that there
are N drones in the network, the system state st is composed
of st = {s1,t, s2,t, s3,t, . . . , sN,t}, where the state for the
drone Di at time t is represented as si,t = [Ui, DLi, Prii,
Popid, Ds].

2) Action Space: At t, Gk chooses an action from the
following action space, at ∈ {1, 2, 3, . . . , N}. Here, at =
i action indicates that Gk satisfies the data download request
from Di. For instance, at = 3 indicates that the data download
request from the 3rd drone D3 gets served. By learning
the optimal action policy, Gk demonstrates good judgment
in satisfying the data download request while balancing all
aspects of the requests.

3) Rewards: Gk chooses an action at t and receives a step
reward rt based on the outcome of the action. A step reward
is formulated to encourage adherence to request deadlines,
minimize satisfaction latency, and maximize data download
throughput, while penalizing missed deadlines. Gk receives
a positive reward if Di’s data download request is satisfied
before its deadline, and a negative reward if its request isn’t
satisfied before the deadline. Likewise, the reward function
also considers request urgency and priority, where scheduling a
data download request with lower priority and urgency results
in a penalty. Since Gk must consider the long-term effect of
its actions in addition to the immediate rewards, it uses the
function below to calculate the cumulative reward.

Rt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑
k=0

γkrt+k (1)

The discount factor γ is a value between 0 and 1, which
signifies how important future rewards are. When γ is close to
0, Gk will prioritizes immediate rewards. If γ approaches 1,
Gk will value its long-term rewards. Hence, the most optimal
policy π∗ is given by π∗ = argmax

π∈P
Rπ , where P is the set of

all possible policies and π∗ is the optimal policy. According
to [14], the value function V π satisfies the following Bellman
equation for a given policy π ∈ P is given by

V π(st) = r(st, π(st)) + γ
∑
st+1

P (st+1 | st, π(st))V π(st+1) (2)

To solve the equation above, the value of state transition
function P (st+1|st, π(st)) is required. However, the exact tran-
sition probability P (st+1|st, at) is unknown by Gk. Therefore,

Q-learning is applied by Gk as it does not rely on transition
probabilities.

D. Deep Q-Learning (DQN)

Q-learning enables the learning of optimal policies without
explicitly requiring the knowledge of transition probabili-
ties. Unlike traditional dynamic programming approaches, Q-
learning doesn’t estimate state transitions but rather learns
the most optimal policy through direct interaction with the
environment. According to [14], Q-values Q∗ for each (st, at)
is given by Q∗(st, at) = r(st, at) + γ

∑
st+1∈st

P (st+1|st,
π(st)) V ∗(st). Since V ∗(st) = maxst Q∗(st, at), the optimal
policy can be written as

π∗(st) = argmax
at

Q∗(st, at). (3)

The Q-value is incrementally updated by the equation below:

Q(st, at) = Q(st, at) + α
[
r(st, at) + γmax

at+1

Q(st+1, at+1)

−Q(st, at)
]
,

(4)

where α ∈ [0,1] represents the learning rate that controls the
size of each update. The problem, however, is that due to the
high-dimensional state space, storing and updating values in
the Q-table becomes impractical. To overcome this limitation,
a deep Q-network (DQN) is employed by Gk to approximate
Q-values without maintaining a table. For a neural network
with parameters θ, the Q-values can be approximated by using
the loss function below:

Li(θi) = E
[
(yi −Q(st, at; θi))

2] (5)

where yi = r + maxat+1
Q(st+1, at+1; θi−1). For each iter-

ation, the value depends on the parameters from the previous
iteration, θi−1, which are fixed and not updated. Gk’s objective
is to compute the weights of the neural network so that the loss
function attains the most minimal value. To this end, gradient
descent is used, which is an algorithm that minimizes errors
between target values and actual values,

∇θiLi(θi) = Est,at,rt,st+1

[
(yi −Q(st, at; θi))

×∇θiQ(st, at; θi)
]

(6)

Here yi is the target value and Q(st, at; θi) is the current
Q-value estimate for θi. ∇θi Q(st, at; θi) is the gradient
of the Q-network for weight θi. Gradient descent can prove
to be inefficient in computing the cost and gradients for a
large training set. A more effective approach can be to use
Stochastic Gradient Descent (SGD) which uses small batches
of data to update parameters to estimate gradient. However, the
standard Q-learning algorithm might diverge especially when
used with large neural networks. In [15], to ensure that large
neural networks do not oscillate, modifications to the algorithm
were introduced. First, the authors drew samples of the agent’s
experience at random instead of taking the latest experience
samples. This helps in lowering the correlation between the
most recent samples, thereby reducing the variance of updates.
Second, the target yi was generated using parameters with
older values by cloning and using a separate Q-network. This



Fig. 2. The performance of average request satisfaction rate.

makes the algorithm more stable and less divergent. Lastly, the
error term yi - Q(st, at; θi) was set to have a value between
-1 and 1. This was done so that the outliers outside of the
range (-1, 1) did not introduce volatility during the learning
phase.

IV. PERFORMANCE EVALUATION

To assess the performance of our approach DrDre, we
develop a customized simulation environment on an Apple
iMac with a M3 chip and 24GB of memory. In addition,
we select SUMO to accurately simulate drones’ movement
and service request load, and the patterns of drone traffic
and mobility are saved in the CSV trace file. The CSV trace
file contains approximately 1 million entries generated over
multiple iterations in SUMO, and those entries will serve as the
dataset for the Deep Q-Network (DQN) to train and determine
the optimal policy. To be specific, in the SUMO simulation
each drone moves along a predetermined route and generates
data download requests relative to its position. Time is divided
into distinct service windows. During each service window, a
drone generates either one or two data download requests. We
assume that the number of drones in the network ranges from
10 to 20, and the size of requested data varies between 1 MB
and 10 MB. We also assume that each drone is equipped with
a limited battery supply to introduce variance in the priority
of data download requests. For performance comparison and
analysis, we choose First-Come-First-Served (FCFS), Random
Selection (RAND), Psched [5], and EdgeMatch [16], and
compare them with our approach DrDre.

First, we measure the average request satisfaction rate of
DrDre, FCFS, RAND, Psched, and EdgeMatch and present
the results in Fig. 2. Here, the average request satisfaction
rate is calculated as the total number of satisfied requests
divided by the total number of received requests over a
number of randomly drawn service windows. As depicted
in Fig. 2, our approach DrDre shows the highest average
request satisfaction rate because it continuously improves the
scheduling policy and maximizes future rewards based on
past experiences. Over the long term, our approach DrDre
is able to prioritize requests while balancing multiple factors
such as request deadline, request urgency, data size, request
priority, and data popularity, finally maximizing request satis-
faction rate. EdgeMatch shows a comparatively lower average
request satisfaction rate than our approach DrDre. EdgeMatch

Fig. 3. The performance of request fulfillment latency.

Fig. 4. The performance of the size of downloaded data.

employs a multi-criteria decision-making approach, it mainly
relies on weights to compute a comprehensive score for each
request, making it less adaptive to dynamic IoD networks
than our approach DrDre. Psched achieves a lower request
satisfaction rate than EdgeMatch and DrDre. This is because
Psched focuses solely on static priority scores of requests
within service windows, without considering future events.
FCFS and RAND lack intelligence when making scheduling
decisions, simply satisfying requests in the order they arrive
or in a random order, respectively. As a result, they obtain the
lowest request satisfaction rate.

Second, we present the results of request fulfillment la-
tency for varying numbers of requests in Fig. 3. Here, the
request fulfillment latency is regarded as the amount of time
elapsed between when a drone submits a request and when
the ground station serves the request. In Fig. 3, it is clearly
shown that our approach DrDre delivers the lowest latency
compared to the other four approaches. The rationale behind
that is our approach DrDre continuously learns to prioritize
requests with smaller data sizes while taking into account
their associated deadline, thereby reducing the overall request
fulfillment latency. EdgeMatch and Psched assign static weight
to scheduling parameters such as deadline and data size, and
it does not flexibly adapt to dynamic IoD environment as our
approach DrDre does, thus, a higher request fulfillment latency
is obtained. FCFS has a considerably larger request fulfillment
latency because it mainly handles requests based on their
arrival time. The worst performance is achieved by RAND
as it randomly chooses service requests to satisfy, which
causes unurgent requests to be served earlier than urgent ones.
As a result, the overall request fulfillment latency increases
significantly.



Fig. 5. The performance of the number of incomplete requests.

Third, we measure the amount of downloaded data by
changing the number of requests for FCFS, RAND, Psched,
and EdgeMatch, and DrDre in Fig. 4. As can be seen in Fig.
Fig. 4, RAND downloads the least amount of data because
it randomly satisfies requests without considering data size or
service completion likelihood. FCFS shows a higher amount of
downloaded data than RAND. As FCFS serves more requests
than RAND, drones can download more data using FCFS.
Psched and EdgeMatch perform better than both FCFS and
RAND because it consider multiple scheduling factors. Our
approach DrDre achieves the best performance in terms of
the amount of downloaded data. This is because not only does
DrDre have the highest request satisfaction rate which causes
more data to be downloaded, but DrDre also learns to improve
the scheduling policy over time to satisfy more requests.

Finally, we demonstrate the number of incomplete requests
against the number of requests in Fig. 5, where the dashed
bar area indicates an increase in the number of incomplete
requests as the data size of each request is uniformly in-
creased. Apparently, our approach DrDre generates the fewest
incomplete requests, and the increment is low when data size
is increased. Psched shows a higher number of incomplete
requests but with a slow increment. This is because Psched
considers data size as a primary parameter for scheduling. The
number of incomplete requests of EdgeMatch is higher than
that of our approach DrDre. In addition, the dashed bar area
reveals a high increment. This is due to the lack of adaptability
to dynamic IoD environment and static weight assignment.
The worst performance belongs to FCFS and RAND due to
their simplified design of scheduling policies.

V. CONCLUSION

In this paper, a deep reinforcement learning-based data
download request scheduling mechanism (DrDre) was de-
signed for Internet of Drones (IoD) system, where drones
submit requests to ground stations for downloading data. In
order to treat all data download requests with scalability,
intelligence, and efficiency, ground stations employ DrDre,
which relies on deep Q-network (DQN), to determine the
most optimal scheduling policy. Our approach DrDre takes
into account scheduling parameters such as request dead-
line, request urgency, data size, request priority, and data
popularity to model the fluid and ever-changing aspects of
IoD systems and formulate it as a Markov Decision Process

(MDP). For performance evaluation, we chose SUMO to
effectively replicate drone movements and create realistic
mobility traces for training at ground stations. Furthermore,
we implemented DrDre along with other four approaches
in the customized simulation environment and carried out
comprehensive experiments to analyze their performance. The
experimental results demonstrate that our approach DrDre
outperforms its counterparts, making it a viable approach for
scheduling data download requests in IoD systems. For future
work, we aim to improve DrDre and enable adjacent ground
stations to collaborate in fulfilling data download requests
across consecutive service windows.

REFERENCES

[1] L. Yu, Z. Li, N. Ansari, and X. Sun, “Hybrid Transformer Based
Multi-Agent Reinforcement Learning for Multiple Unmanned Aerial
Vehicle Coordination in Air Corridors,” IEEE Transactions on Mobile
Computing (Early Access), pp. 1–14, 2025.

[2] J. Lin, B. Alkouz, A. Bouguettaya, and A. A. Safia, “Dynamic and Im-
mersive Framework for Drone Delivery Services in Skyway Networks,”
ACM Transactions on Internet Technology, pp. 1–30, 2025.

[3] I. Bhattarai, C. Pu, K. Choo, and D. Korać, “A Lightweight and Anony-
mous Application-Aware Authentication and Key Agreement Protocol
for the Internet of Drones,” IEEE Internet of Things Journal, vol. 11,
no. 11, pp. 19 790–19 803, 2024.

[4] NASA’s Advanced Air Mobility Mission, Last accessed: February 3,
2025, https://www.nasa.gov/mission/aam/.

[5] C. Pu and L. Carpenter, “Psched: A Priority-Based Service Scheduling
Scheme for the Internet of Drones,” IEEE Systems Journal, vol. 15,
no. 3, pp. 4230–4239, 2021.

[6] A. Ebrie and Y. Kim, “Reinforcement learning-based optimization for
power scheduling in a renewable energy connected grid,” Renewable
Energy, vol. 230, p. 120886, 2024.

[7] Q. Meng, S. Hussain, F. Luo, Z. Wang, and X. Jin, “An Online Rein-
forcement Learning-Based Energy Management Strategy for Microgrids
With Centralized Controll,” IEEE Transactions on Industry Applications,
vol. 61, pp. 1501–1510, 2024.

[8] L. Ye, L. Yang, Y. Xia, and X. Zhao, “A Cost-Driven Intelligence
Scheduling Approach for Deadline-Constrained IoT Workflow Appli-
cations in Cloud Computing,” IEEE Internet of Things Journal, vol. 11,
pp. 16 033 – 16 047, 2024.

[9] T. Zhang, K. Lam, and J. Zhao, “Device Scheduling and Assignment in
Hierarchical Federated Learning for Internet of Things,” IEEE Internet
of Things Journal, vol. 11, pp. 18 449 – 18 462, 2024.

[10] S. Seifhosseini, M. Shirvani, and Y. Ramzanpoor, “Multi-objective cost-
aware bag-of-tasks scheduling optimization model for IoT applications
running on heterogeneous fog environment,” Computer Networks, vol.
240, p. 110161, 2024.

[11] L. Wu, H. Lin, and X. Wang, “Federated Training Generative Adversarial
Networks for Heterogeneous Vehicle Scheduling in IoV,” IEEE Internet
of Things Journal, pp. 1 – 1, 2024.

[12] S. Safavat and D. Rawat, “Energy-efficient resource scheduling using x-
cnn and cd-sbo for sdn based mec enabled iov,” in Proc. IEEE CCNC,
2023, pp. 411–416.

[13] J. Tian, D. Wang, H. Zhang, and D. Wu, “Service Satisfaction-Oriented
Task Offloading and UAV Scheduling in UAV-Enabled MEC Networks,”
IEEE Transactions on Wireless Communications, vol. 22, no. 12, pp.
8949–8964, 2023.

[14] M. Alsheikh, D. Hoang, D. Niyato, H. Tan, and S. Lin, “Markov decision
processes with applications in wireless sensor networks: A survey,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1239–1267,
2015.

[15] V. Mnih et al., “Human-Level Control Through Deep Reinforcement
Learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[16] A. Bandyopadhyay, V. Mishra, S. Swain, K. Chatterjee, S. Dey,
S. Mallik, A. Al-Rasheed, M. Abbas, and B. Soufiene, “Edgematch:
A smart approach for scheduling iot-edge tasks with multiple criteria
using game theory,” IEEE Access, vol. 12, pp. 7609–7623, 2024.


