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Abstract—As the drone technology rapidly progresses, the no-
tion of Internet of Drones (IoD) has surfaced as a vital framework
for facilitating connections between aerial drones and existing
cyber infrastructures. With ubiquitous IoD applications deployed
in the modern cities, we need to focus on resolving security and
privacy matters before enjoying the welfare benefits brought by
these advanced applications. A minority of machine learning-
based authentication systems recently emerged in the Internet
of Things (IoT) community, however, these intelligent techniques
have the data privacy and scalability problems. To confront the
current unresolved authentication challenges in the realm of IoD,
we propose a novel federated learning (FL) based authentication
scheme, also referred to as FLASH, for futuristic IoD systems.
The FLASH’s basic idea is that a deep neural network (DNN)
architecture is deployed with the ground stations to train an
authentication model with drones’ radio characteristics (e.g.,
carrier frequency offset and I-Q imbalance) in a decentralized
way. The newly trained local models at the ground stations
are encrypted using homomorphic encryption and send back to
the IoD federated server for the aggregation of a new global
authentication model. We conduct an experimental study in
MATLAB and evaluate the performance of FLASH and other
four benchmark schemes; the simulation results demonstrate that
the FLASH is more effective than its counterparts.

Index Terms—Security and privacy, Internet of Drones, deep
neural network, federated learning, authentication.

I. INTRODUCTION

Thanks to the fast-paced advancements in UAV/drone tech-
nology, the Internet of Drones (IoD) has become a burgeoning
aerial communication architecture which can seamlessly assist
the exchange of IoD resources. An IoD system refers to
the collective network of aerial drones and ground-based
telecommunication infrastructures as well as the technology
that facilitates communication between drones and telecom-
munication infrastructures, and between drones themselves.
By reason of the introduction of low-cost computing chips
and high-bandwidth telecommunications, the IoD architecture
has brought forth radical transformations in various industries,
offering extensive possibilities for automation, enhanced ef-
ficiency, and better decision-making. For example, the IoD
smart farming system empowers farms to accurately monitor
crop health through aerial images and automate farming tasks
efficiently (e.g., pesticide spray) [1]. With the support of other
technology like machine learning, it is foreseen that the IoD
architecture and its next-generation systems will enhance lives
and usher in a new age of innovation and efficiency.

In the IoD applications, the remote pilots operate drones
to collect the information of the interested target and deliver
it to the ground stations. Not only do the ground stations

serve as the information receivers, but they also administer
and monitor IoD drone operations by issuing instructions and
commands through a wireless medium. As the IoD appli-
cations often involve critical and sensitive information (e.g.,
law enforcement, security surveillance, etc.) [2], the shared
wireless spectrum automatically becomes an attack surface
that can be easily targeted for unauthorized information access.
Moreover, the initial design of IoD paradigm does not place
emphasis on security and privacy [3]. The major entity of
IoD systems, drones, are also resource constrained. Thus,
specialized security solutions are necessitated to achieve the
required level of trustworthiness and resource protection for
various IoD applications. Last but not least, drones are moving
freely through the air, so it is effortless for adversary to
capture and launch memory dump attacks to access the critical
information. Hence, minimizing the storage of cryptographic
keys in the memory is a highly effective approach.

To address the abovementioned privacy and security issues,
as a part of the first line of defense in information security,
mutual authentication, has become a promising method for
protecting IoD networks from cyber attacks within the cyber-
threat ecosystem. Recently, numerous mutual authentication
protocols, e.g., public key- [4], certificate- [5], token-based
[6], and other approaches, have been developed for IoD en-
vironments. For example, in the public key-based approaches,
a pair of public/private keys is pre-issued to drones and will
be utilized to establish secure channels between drones and
ground stations. Even though the existing approaches can
somehow protect IoD networks from certain cyber attacks,
they either fail to fulfill all the necessary privacy and se-
curity standards or experience performance issues. First, a
central server is usually considered as a part of the existing
security frameworks, which is responsible for managing the
involvement of drones in system operations by governing
their cryptographic keys. However, the central server could
become a single point of failure, which would compromise
the entire system’s reliability and availability. Second, as
the scale of IoD applications is expanded, the number of
drones could experience an exponential increase, which will
impose a substantial authentication load on the central server.
Last, providing physical protection to drones can be quite
challenging because of widespread deployment and varied
environments. Thus, integrating the physical uniqueness of
drones into an authentication approach can greatly improve
the security of IoD systems.
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Inspired by the preceding discussion, in this paper we
propose a Federated Learning-based Authentication ScHeme
(referred to as FLASH) for IoD systems. The basic idea of
FLASH is that ground stations in the IoD networks collabo-
ratively build a global authentication model by training and
submitting local authentication models to the federated server.
To be specific, ground stations take advantage of drones’
quadrature amplitude modulation (QAM) modulated radio
frequency signal such as carrier frequency offset (CFO), I-
Q features, and coefficient of frequency offset to train local
models which will be used to authenticate drones within a
federated learning framework. After that, ground stations en-
crypt their local model updates using homomorphic encryption
before sending them to the federated server. In summary, the
contributions of this paper are listed below:

• We propose a federated learning based authentication
framework (hereinafter referred to as FLASH) for IoD
environment, where ground stations collaboratively build
a global authentication model in a federated manner.

• We select the unique features of drones’ quadrature
amplitude modulation (QAM) modulated radio frequency
signal such as carrier frequency offset (CFO), I-Q fea-
tures, and coefficient of frequency offset to train local
models for drone authentication.

• We build an experimental environment in MATLAB
and conduct extensive simulation-based evaluation with
the comparsion of four benchmark schemes liteA4
[7], SLAP-IoD [8], SAAF-IoD [9], and PUF-IPA
[10]. The source codes are publicly available at
https://github.com/congpu/flash.

II. BACKGROUND

A. Quadrature Amplitude Modulation (QAM) Modulation

In Fig. 1, we present an information flow diagram for
drones’ QAM modulated radio frequency signal based on
[11]. Specifically, the transmitter (Tx) employs a 16-QAM
modulator which is composed of two paths, In-phase (I) and
Quadrature (Q), along with a DAC, known as digital-to-analog
converter. The basic operational flow is that the DAC converts
the digital signal into an analog signal, which will be further
mapped to constellation points. The constellation points are
used to portray various combinations of phase shifts and
amplitude. A local oscillator (LO) frequency and an root-
raised-cosine (RRC) filter added to convert digital signals from
one frequency to another and reduce intersymbol interference,
respectively. Finally, the power amplifier (PA) id equipped to
increase the power of signal to reach the receiver (Rx).

On the receiving (Rx) side, the signal is first passing through
a direct current (DC) blocker, where the desired AC signals
are processed, while any unwanted DC components are filtered
out. After that, the signal reaches a carrier synchronizer,
ensuring that the receiver’s local oscillator is synchronized in
frequency and phase with the incoming signal’s carrier wave.
The signal strength will then be adjusted by the automatic gain
control (AGC) and RRC filter. In addition, an I-Q compensator
is used to correct amplitude and phase imbalances between

Fig. 1. Information flowchart for QAM modulated radio frequency signal.

the in-phase (I) and quadrature (Q) components of a signal,
while a Doppler corrector is employed to adjust for frequency
shifts caused by relative motion between the transmitter and
receiver. Finally, the signal is demodulated from the 16-
QAM constellation to the bit stream. A Deep Neural Network
(DNN) is also properly configured on the receiver (Rx) side to
uniquely identify each component by analyzing distortions and
transmission-induced features and assigning a unique identifier
that facilitates multiclass classification.
B. Federated Learning

In 2017, Google scientists invented federated learning [12]
with the goal of improving the effectiveness of machine learn-
ing models on electronic handheld devices while preserving
user privacy. Since its inception, the concept of federated
learning has broadened its applications to various domains
such as supply chain, finance, healthcare, etc., where ensuring
data privacy and security is crucial. The basic idea of federated
learning is that a number of clients (or simply referred to as
entities) collaboratively train a local model using their on-
device data without sharing the actual data. After the local
training session, each client shares the local model updates
(e.g., biases and weights) with a central server, which further
aggregates these decentralized updates to form a global model.
Finally, the updated global model is then sent back to the
clients, and the process repeats. In the cycles of federated
learning, several aggregation techniques are available for the
central server to aggregate local model updates. One of widely
adopted approaches is Federated Averaging (in short FedAvg)
which combines local model updates from clients by averaging
them to create an improved global model.

III. RELATED WORK

In [13], the authors introduced a swarm authentication
mechanism that utilizes blockchain for the storage of drones’
identity and cryptographic information. The approach was
made feasible by using a clustering technique to dynamically
form drone clusters based on their locations. Although the
experimental study has demonstrated some improvements in
network performance, the proposed approach still suffers from
a scalability issue when the number of drones increases in the
network, causing an increase in blockchain transactions. Con-
sequently, the authentication bottleneck problem will occur as
drones attempt to authenticate and update their cluster-related
information. In [7], a novel authentication and key agreement
approach is designed for aerial-ground communication envi-
ronments, where drones and ground stations negotiate data



type sensitive session keys with the assistance of cryptographic
primitives such as hash function, bitwise XOR, and physical
unclonable function (PUF). Unfortunately, as the aerial-ground
communication systems expand to meet the diverse needs of
various applications, the authentication scalability issue will
require more effort to be addressed. [14] presents an authen-
tication scheme that authenticates drones while maintaining a
safe distance from the verifier. This is done by using machine
learning to compare the sound recordings of drones against the
sound recordings of the verifier. If the recordings are similar,
the authentication succeeds. The problem with this approach is
that the experiments were conducted in a controlled environ-
ment. It might not work or may introduce complexities when
the environment changes (e.g. gusty winds).

Radio frequency (RF) fingerprinting is widely regarded
as a technique to identify a radio transmitter (or wireless
communication device) based on the unique characteristics of
its signal transmission. The authors in [15] provide a tutorial
of RF-based identification and authentication for Internet of
Thing (IoT) devices, and then present a hybrid approach which
takes advantage of deep learning’s capability to extract the
similarity of devices’ fingerprints. The RF dataset of legitimate
IoT devices is trained locally at the wireless receiver. However,
the lack of physical protection for wireless receivers will make
them vulnerable and a potential single point of failure. In [16],
a fingerprinting framework is presented for Bluetooth devices.
The proposed fingerprinting approach adopts convolutional
neural network and gated recurrent unit to achieve high finger-
printing accuracy. However, the gated recurrent unit introduces
additional complexity to the framework, which might require
significant computational power.

IV. THE PROPOSED AUTHENTICATION SCHEME

In this section, we describe the proposed federated learning
(FL) based authentication scheme (later just FLASH) for IoD
systems. The basic idea of the FLASH is to deploy a deep
neural network (DNN) model at ground stataions to train an
authentication model with drones’ radio characteristics (e.g.,
carrier frequency offset and I-Q imbalance) in a decentralized
way. The newly trained local models at the ground stations
are encrypted using homomorphic encryption and send back
to the IoD federated server for the aggregation of a new global
authentication model. The rationale behind using radio char-
acteristics for drone authetnication is that the manufacturing
process of each drone’s radio transmitter has slight differences,
which can be exploited to uniquely identify each drone.
A. System and Adversary Models & Security Requirements

As shown in Fig. 2, the FLASH consists of three major
entities, drones, ground stations, and federated server. A
number of uniquely-identified drones perform tasks in an area
of interest and deliver them (i.e., data) to ground stations
via unsecured wireless channels. When the drone flyes into
the communication scope of ground station, it broadcasts a
beacon message which piggybacks its pseudonym. It is worth
mentioning that the drone flyes fast along a specified path
or trajectory and the communication scope of ground station

Fig. 2. The system architecture of FLASH.

is constrained. The process of authenticating the drone not
only needs to be communication-efficient, but also does not
take up too much of the drone’s sojourn time within the
ground station’s coverage area. The rationale is that when the
drone flyes out of the coverage area of ground station, the
authentication as well as the task delivery process will fail. We
assume that each drone is equipped with an integrated circuit
consisting of a unique radio transmitter due to variations in
manufacturing techniques and processes, however, the design
of radio transmitter is out of the scope of this paper. Ground
stations are considered as trusted entities, while drones are
untrusted and resource-constrained.

According to the widely adopted Dolev–Yao adversary
model in [17], entities using an insecure wireless channel for
communication are deemed untrustworthy. Consequently, an
adversary can eavesdrop on, copy, tamper with, modify, replay,
or erase the messages transmitted over insecure wireless chan-
nels. The adversary’s objective is to set up an authenticated
communiation with ground stations without being noticed,
and then establish an authentication with ground stations
without being detected, and then inflict significant harm on
individuals or organizations. The FLASH must achieve the
following security requirements. (i) Authentication: The iden-
tity of drones needs to be verified, ensuing that the drone
delivering tasks is who it claims to be. (ii) Integrity: The
accuracy and consistency of local authentication models and
global authentication model cannot be compromised. (iii)
Pseudonym: The legitimate drone will use its fictitious name
as an alternative to its real identifier in the beacon messages.
(iv) Confidentiality: Legitimate devices’ identity information
and their radio frequency (RF) signals’ characteristics shall
not be included in local authentication models. and (v) Access
Control: Unauthorized drones shall not be allowed to deliver
tasks to ground stations.
B. Federated Learning-Based Authentication Scheme

In the following, we present the details of the proposed
federated learning-based authentication scheme (FLASH), As
shown in Fig. 2, a deep neural network (DNN) architecture is



TABLE I
DNN MODEL PARAMETERS

DNN Parameters Details

Input Size 10
Output Size 2
Hidden Layers Count 3
No. of Neurons in Layers∗ 150/80/50
Batch Size 32
Activation Function (Hidden) ReLU
Activation Function (Output) Softmax
Regularization L2

∗:150 neurons in the first layer, 80 neurons in the second layer, and
50 neurons in the third layer.

deployed at ground stations to train an authentication model
with drones’ radio characteristics (e.g., carrier frequency offset
and I-Q imbalance) in a non-centralized fashion. And then,
the ground stations encrypt the newly trained local models
using homomorphic encryption and send them back to the IoD
federated server which will aggregate them into a new global
authentication model.

First, the federated server initializes the global model
utilizing a deep neural network. Here, the global model
GlobalModel and the threshold value thrauth of authen-
ticating drones are initialized with the radio characteristics
of several legitimate drones. The GlobalModel is a base
template that will be iteratively updated based on the local
models from the ground stations. After initialization, the
federated server distributes GlobalModel and thrauth to all
participating ground stations in the framework. As a result, all
ground stations have a copy of GlobalModel, which enables
them to begin the training of local models.

Second, when a drone flies into the broadcasting range of
the ground station, it sends a beacon message piggybacked
with its fictitious identifier FIDdrone to the ground station.
If there is an entry in the database that stores all registered
drones’ FIDdrone and other identification information, the
ground station proceeds with the following steps. Otherwise,
the ground station will discard the drone’s beacon message.
The usage of FIDdrone in the beacon message will guar-
antee the privacy of drone identities. After receiving drones’
beacon messages, the ground stations commence training the
local autnetication models and authenticting the drones in
the following steps. (i) The ground stations use the drones’
radio frequency information to train the local authentication
model iteratively using stochastic gradient descent (SGD).
(ii) The ground stations adjust their local model parameters
(weights and biases); (iii) The ground stations calculate the
Euclidean distance between their local model updates and
the global authentication model. If the Euclidean distance is
less than thrauth, the drones are authenticated. Otherwise, the
beason messages are discared and the authentication requests
of drones are declined. and (iv) The ground stations encrypt
the local model updates using homomorphic encryption and
send them to the federated server for aggregation.

Third, after receiving the local model updates from ground
stations, the federated server aggregates them using Federated
Averaging (FedAvg). Here, FedAvg enables the federated

server to build a global authetnication model without requiring
the transfer of drones’ radio frequency information from the
ground stations. After the aggregation process is completed,
the federated server form a new global authentication model
GlobalModel. And then, the federated server redistributes
the updated GlobalModel to all ground stations. Finally, the
ground stations replace their local models with the newly
received GlobalModel.
C. Deep Neural Network Architecture

The ‘‘Datasets for RF fingerprinting’’ [18] is used in the
deep neural network (DNN) architecture. We first preprocess
the raw continuous stream of IQ values into distinct frames
and discard noisy frames. After that, we apply various signal
processing techniques ncluding matched filtering, frequency
compensation, and timing recovery to process each frame.
These signal processing techniques help enhance the signal-
to-noise ratio and are useful for correcting the frequency offset
as well as timing errors observed during transmission and
reception. The outcome of the dataset preprocessing process
is robust data that is reliable for interpretation and analysis by
the DNN architecture.

The proposed DNN model consists of three hidden layers,
each followed by a Rectified Linear Unit (ReLU) activation
function. The input layer directly depends on the number of
features extracted for drone authentication. In this paper, 10
features including radio frequency and I-Q are adopted. The
first hidden layer consists of 150 neurons, which work as an
abstraction for the input data. The ReLU activation function is
critical as it introduces non-linearity and enables the learning
of complex patterns within the model. The second layer is
composed of 80 neurons to support and capture the convoluted
relationships in the feature set. The third layer contains 50
neurons and continues abstraction while learning the rela-
tionships and patterns from the preceding layers. Finally, the
output layer uses a softmax activation function for multi-class
classification. It converts the model output into probability
scores that are ideal for drone authentication. Table I lists all
parameters used in the proposed DNN model.
D. Drone’s Radio Frequency (RF) Features

Radio frequency (RF) properties are widely regarded as
a robust mechanism for electronic device identification and
authentication. The rationale is that the unique fingerprints
of radio frequencies derived from devices’ communication
signals are inherently tied to their transmitters. In the FLASH,
we consider the RF features derived from the Quadrature
Amplitude Modulation (QAM) [19]. QAM is a modulation
technique that combines amplitude and phase modulation to
transmit data efficiently over various types of media.

Frequency Features: In the drone’s radio transmitter, the
ocal oscillator (LO) causes the small deviations between the
intended frequency and the actual frequency, which is widely
known as frequency offset. The permissible frequency offset
range varies based on the applicable standard. For example,
according to the IEEE 802.11b standard, the deviations should
be within 25 parts per million (ppm).
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Fig. 3. The results of accuracy, precision, recall, and F1 score for the FLASH
and other machine learning models.

I-Q Features: In-phase (I) and quadrature (Q) components
enable a QAM modulator to encode information by varying
both the amplitude and phase of a signal. Due to variations in
the manufacturing process of transmitters, the in-phase and
quadrature components may not have the same amplitude,
which may result in an amplitude mismatch. Likewise, the
phase can be deviated and the quadrature phase may not be
exactly 90 degrees out of phase with the in-phase component.

Coefficient of Frequency Offset: The coefficient of frequency
offset is defined as the ratio of standard deviation to the mean
of carrier frequency offset.

In summary, a total of ten features are derived for the
training of DNN model. Carrier frequency and coefficient of
frequency offsets represent two features. The remaining eight
features are extracted from the I-Q values with one feature
from each of the four quadrants.

V. PERFORMANCE EVALUATION

A. Experimental Environment and Dataset

We set up a MATLAB-based simulation environment on
a Windows 11 desktop with 16GB of RAM and a 12th
generation Intel processor (2.10 GHz) for experimental study.
The FLASH is simulated using the Neural Network Toolbox
in MATLAB, adhering to a 16-QAM modulation scheme.
The preprocessing steps, such as matched filtering, frequency
compensation, etc., are achieved using MATLAB‘s Signal
Processing Toolbox. Not only do we implement the FLASH,
but we also choose to implement four other benchmark
schemes such as liteA4 [7], SLAP-IoD [8], SAAF-IoD [9],
and PUF-IPA [10] for performance comparison and analysis.
The simulation results of running time, CPU time, and memory
overhead are measured and obtained by changing the number
of algorithm executions.

The dataset that we used to train the authentication model is
‘‘Datasets for RF Fingerprinting’’ [18]. The dataset contains
raw IQ samples from 16 USRP X310 software-defined radios
(SDRs) which were taken at varying distances between 2 feet
and 62 feet. As 16 USRP X310 SDRs were utilized in the
dataset and each SDR generates 1000 frames, the input size

(a) (b)

Fig. 4. Comparison of running time and CPU time against the number of
algorithm executions.

for the FLASH is 16,000. For a total of 10 features, the size
of feature set become 1.6×105. In addition, the emissions of
USRP X310 SDRs are IEEE 802.11a standard-compliant and
can be generated by MATLAB WLAN System toolbox. After
preprocessing, the entire dataset is distributed into multiple
subsets: 70% for training, 15% for validation, and 15% for
testing, respectively.

B. Comparison with Machine Learning Models

First, we compare the FLASH with other machine learning
models including Artificial Neural Network (ANN), Deep
Neural Network (DNN), and K-Nearest Neighbors (KNN) in
terms of accuracy, precision, recall, and F1 score. Accuracy
measures the overall correctness of a given machine learning
model’s predictions, and it is calculated as the ratio of the
number of correct predictions to the total number of predic-
tions made. As shown in Subfig. 3(a), our approach FLASH
obtains the highest accuracy in comparison to other three
machine learning models. The rationale behind that is the
nature of collaborative learning in the FLASH, which enables
ground stations to learn from various drones’ RF signals
without utilizing the centralized data. Precision measures the
accuracy of positive predictions. In Subfig. 3(b), the FLASH
achieves the highest precision among all tested machine
learning models. Here, achieving a higher precision value
indicates that the FLASH does not consider adversarial drones’
RF signals as legitimate ones. Recall is the measurement
of the machine learning model’s ability to correctly identify
all instances from all positive samples in the dataset. As
shown in Subfig. 3(c), the FLASH shows the highest recall
value, while KNN delivers the lowest recall score. These
results prove that our approach FLASH is able to effectively
identity legitimate drones in highly dynamic environments. F1
score represents the harmonic mean of precision and recall of
a machine learning model. For the machine learning based
authentication model, providing high security (high precision)
while maintaining availability for legitimate drones (high
recall) is both important. It is clear that our approach FLASH
outperforms other three machine learning models in Subfig.
3(d). It effectively conveys that the FLASH has a balanced
performance, as indicated by the highest F1 score, making it
an ideal authentication protocol for real-world applications.

C. Comparison with Traditional Authentication Schemes

Second, we compare the FLASH with four traditional
authentication schemes such as liteA4, SLAP-IoD, SAAF-IoD,



Fig. 5. Storage overhead.

and PUF-IPA. Here, the training portion of the FLASH is not
considered in the comparison.

In Subfig .4(a), we measure and present the running time
of FLASH, liteA4, SLAP-IoD, SAAF-IoD, and PUF-IPA. It
is clearly shown that the FLASH has the least running time
because it simply measures the distance between model up-
dates and compares drones’ RF signals with the authentication
threshold. In contrast, liteA4, SLAP-IoD, SAAF-IoD, and
PUF-IPA not only need to frequently retrieve the stored crypto-
graphic information, but also to encrypt/decrypt it. Moreover,
the CPU time with a varying number of algorithm executions
is presented in Subfig .4(b). Apparently, the FLASH achieves
the least CPU time since it executes the smallest number
of operations to authenticate drones. Finally, we demonstrate
the storage overhead of FLASH, liteA4, SLAP-IoD, SAAF-
IoD, and PUF-IPA in Fig. 5. The median value of memory
(RAM) is plotted, with error bars showing the maximum and
minimum values. The traditional authentication approach, i.e.,
liteA4, SLAP-IoD, SAAF-IoD, and PUF-IPA, utilize a signif-
icant amount of memory to perform cryptographic operations
such as hashing, pairing, etc. However, our approach FLASH
requires less memory to authenticate drones as it only needs
to compute the distance between model updates and compare
it with the authentication threshold.

VI. CONCLUSION

In this paper, a novel federated learning based authentication
approach was proposed for Internet of Drones (IoD) systems,
wherein multiple ground stations train drones’ RF signals lo-
cally and submit the updated weights and gradients to the IoD
federated server. Our approach utilizes the inherent variations
present in radio transmitters (Tx) to extract features and build
a deep neural network (DNN), resulting in a robust machine
learning model that can authenticate drones based on their
radio RF signals. We implemented our approach and other
benchmark schemes in MATLAB, and compared them in terms
of accuracy, precision, recall, and F1 score, running time, CPU
time, and storage overhead. The experimental study showed
that our approach is more effective than its counterparts. For
future work, we plan to use other modulation schemes such as
orthogonal frequency-division multiplexing (OFDM) to extract
features and explore other neural networks such as Recurrent
Neural Networks (RNN) or Convolutional Neural Networks
(CNN).
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