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a b s t r a c t 

Routing protocols play an important role in the communication and information distribu- 

tion within an Internet of Things (IoT) system. RPL is one such popular routing protocol for 

IoT devices and systems. However, security in RPL is an afterthought, and it does not meet 

the demands of today’s complex cyberthreat landscape. Focusing on sybil attack detection 

in RPL-based IoT, we first propose a lightweight Bloom filter and physical unclonable func- 

tion (PUF) based sybil attack detection mechanism (hereafter referred to as liteSAD ). Our 

approach is designed to minimize memory cost as well as detection latency, without af- 

fecting the detection accuracy. Specifically, in liteSAD , Destination-Oriented Directed Acyclic 

Graph (DODAG) root generates a Bloom filter array through hashing each legitimate node’s 

identifier and PUF response, and distributes it through a new packet named BF-DAO. Upon 

receiving the BF-DAO packet, each legitimate node retrieves the Bloom filter array, updates 

its local copy, and employs it to detect sybil attack. We also propose a probabilistic DIO reply 

mechanism (i.e., proDIO ) to reduce the number of broadcasted DIO packets in response to 

attack DIS packets. We investigate the setting of Bloom filter parameters that minimize the 

probability of false positive and time complexity while meeting the requirement of mem- 

ory constraints in IoT devices. We also evaluate the performance of our mechanism lite- 

SAD + proDIO through extensive simulation experiments, where the results demonstrate that 

liteSAD + proDIO can provide better performance in terms of detection rate, detection latency, 

miss detection rate, DIO Trickle timer, number of broadcasted DIO packets, and energy con- 

sumption. In summary, our major contributions are twofold: (i) the comprehensive analysis 

of RPL routing protocol, Trickle algorithm, and the impact of sybil attack; and (ii) the proposal 

of lightweight Bloom filter and PUF based sybil attack detection mechanism. 
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. Introduction 

he concept of Internet of Things (IoT), a distributed network 
f smart physical objects communicating with each other and 

istributing intelligence to humans Tange et al. (2020) , is now 

 norm in our society. Applications of IoT can be found in con- 
umer environment (e.g., smart city), industrial environment 
e.g., Industry 4.0), etc. The trend and continued interest in IoT 

re partly fueled by advances in other supporting technolo- 
ies, such as 5G and artificial intelligence (AI). For example,
ccording to a study by GSMA Intelligence’s Research & Anal- 
sis Intelligence (2019) , the productivity benefits of IoT are es- 
imated to be worth around $370 billion per annum in 2025,
omprising 0.34% of global GDP. 

There are a number of challenges associated with the de- 
ign and implementation of IoT devices and systems. For ex- 
mple, how do we achieve secure and efficient communica- 
ion in an IoT environment? This is partly achieved using rout- 
ng protocols, such as the widely used Cisco‘s routing protocol 
or Low-Power and Lossy Networks Morrow (2015) . The latter,
lso referred to as RPL in the literature Winter et al. (2012) ,
s designed to work on routing resource-constrained (IoT) 
evices. A number of other routing protocols, such as cog- 
itive routing, stable election routing, opportunistic power 
ontrolled routing, point-to-point routing, and shufed frog 
eaping optimization based routing, have been designed to 
ork in an IoT setting Al-Turjman (2019) ; Behera et al. (2019) ; 
outinho et al. (2020) ; Djamaa et al. (2021) ; Jazebi and Ghaf- 

ari (2020) . 
Similar to many other systems and protocols, functional- 

ty is often the design priority and security is an afterthought.
s a result, many efficient routing protocols are not secure 
gainst common attacks, particularly in the increasingly com- 
lex cyberthreat environment. For example, RPL has several 
ttractive features such as automatic configuration, network 
hange adaptation, loop detection and avoidance, and mul- 
iple network instances Winter et al. (2012) , but it is vul- 
erable to both common attacks inherent of wireless net- 
ork and RPL-specific attacks Raoof et al. (2018) ; Verma and 

anga (2020) . One particularly destructive RPL-specific attack 
s sybil attack Pu (2020) , where an adversary intentionally 
roadcasts an extravagant number of Destination-Oriented 

irected Acyclic Graph (DODAG) Information Solicitation (DIS) 
ackets piggybacked with fake node identifiers. When a le- 
itimate node receives attack DIS packets, it has to repeat- 
dly reset its DIO Trickle timer Levis et al. (2011) and broad- 
ast DODAG Information Object (DIO) packets, which con- 
umes extensive amount of (limited) battery energy. This is 
learly a significant concern in an IoT setting. Although some 
echanisms Airehrour et al. (2019) ; Althubaity et al. (2020) ; 

roves and Pu (2019) ; Kaliyar et al. (2020) ; Murali and Ja- 
alipour (2019) have been proposed to detect and mitigate 

ybil attack in RPL-based IoT, they either have high commu- 
ication and computation overheads or do not meet the re- 
uirement of memory constraints of IoT devices. 

In this paper, we focus on sybil attack detection in RPL- 
ased IoT systems, and minimizing the impact of sybil at- 
ack. Specifically, we first propose a lightweight Bloom filter 
nd physical unclonable function (PUF) based sybil attack de- 
t
ection mechanism (i.e., liteSAD ), in order to detect sybil at- 
ack in a distributed manner. In liteSAD , DODAG root generates 
 Bloom filter array through hashing each legitimate node’s 
dentifier and PUF response, and distributes it through a new 

acket named BF-DAO. After receiving the BF-DAO packet,
ach legitimate node retrieves the Bloom filter array, updates 
ts local copy, and employs it to detect sybil attack. Then, we 
ropose a probabilistic DIO reply mechanism (i.e., proDIO ) to 
educe the number of broadcasted DIO packets in response to 
ttack DIS packets. 

Our work is novel in terms of three aspects: RPL-based 

oT, Bloom Filter + Physical Unclonable Function (PUF), and 

ightweight Countermeasure. First, we focus on RPL-based 

oT which is an active area of research and development en- 
eavors by many technical and commercial communities. Our 
omprehensive analysis of RPL routing protocol, Trickle algo- 
ithm, and sybil attack will provide an in-depth understand- 
ng of RPL-based IoT and its potential security issues. Most 
mportantly, it demonstrates the importance of efficient and 

ightweight countermeasures in the protection of IoT systems.
econd, we propose a lightweight Bloom filter and PUF based 

ybil attack detection mechanism. While neither Bloom filter 
or PUF are new techniques, using Bloom filter and PUF to- 
ether to defend against sybil attack in RPL-based IoT is new.
hird, our sybil attack countermeasure is designed based on 

wo lightweight techniques: Bloom filter and PUF. Compared 

o most existing approaches relying on an implicit overhear- 
ng or using non-negligible data structure, our approach has 
ower attack detection overhead while maintaining high de- 
ection accuracy and low detection latency. 

The remaining parts of the paper is organized as follows.
he extant literature on sybil attack detection is discussed 

n Section 2 . In Section 3 , we provide an overview of RPL
nd analyze the impact of sybil attack. We present the net- 
ork and adversary models, and review the relevant tech- 
iques in Section 4 . In Section 5 , we present our proposed lite-
AD and proDIO , prior to presenting the theoretical analysis of 
loom filter parameter setting in Section 6 . In Section 7 , we de-
cribe our experimental setup and discuss the results. Finally,
ection 9 summarizes our paper. 

. Related work 

ince the design of RPL Winter et al. (2012) was presented in 

he early 2010s, there have been a number of studies focusing 
n both vulnerability identification and exploitation, as well 
s attack mitigation, in RPL-based IoT systems. In Pu (2020) ,
or example, the author studies the different measures of sta- 
istical dispersion and proposes a Gini coefficient based mech- 
nism to detect sybil attack in an IoT system, where the sta- 
istical dispersion of node identifiers in attack DIS packets is 

easured within an observation time period and the corre- 
ponding Gini coefficient is then calculated. If the Gini coef- 
cient is larger than a threshold value, then it is determined 

hat a sybil attack most likely exists in the network. However,
he detection accuracy and latency depend on the length of 
bservation time period – a short time period results in low 

etection accuracy but short detection latency, while a long 
ime period produces high detection accuracy as well as long 
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detection latency. In addition, there could be a high false neg-
ative rate if the threshold value is not set properly. 

A trust system (a combination of direct and indirect
trust) is proposed to detect and isolate sybil attack nodes in
Airehrour et al. (2019) . The basic idea is to assign more weight
to the current trust value rather than the historical trust value
when evaluating the behaviors of a node. When an adversary
masquerades as a new node with fake identifier, it will not
be involved in routing activities because of a low trust value.
This technique can detect and isolate the adversary, but it will
also prevent legitimate new nodes from involving any routing
activities. The authors in Kaliyar et al. (2020) propose to set
up the sybil detection table, an additional data structure, at
every non-leaf node in the tree-like network. When a node re-
ceives a packet, it retrieves the identifiers of source node and
previous-hop node, and checks the sybil detection table for
an entry with matching source node identifier. If no matching
entry is found, a new entry with the retrieved identifier infor-
mation is added to the sybil detection table. If an entry with
the same source node identifier is found but the previous-hop
node identifier is different, the node issues an alarm packet
to report the detection of sybil attack. However, a key limi-
tation with this approach is that computational overhead is
closely related to the size of the sybil detection table. For in-
stance, a larger number of entries in the sybil detection table
will cause an increase in energy consumption, processing la-
tency as well as memory cost. In Murali and Jamalipour (2019) ,
the authors use artificial bee colony model to analyze the be-
haviors of sybil attacks, and then propose a detection mech-
anism. The proposed approach is a monitoring-based mecha-
nism, where each node maintains a counter variable to record
the number of control messages received from each neighbor
node. In addition, each node will also track the time interval of
exchanged control messages with neighbor nodes. While this
approach can detect an adversary with constant attack rate, it
will fail if the adversary intermittently varies the rate of attack
traffic. 

Another line of work is to detect sybil attacks in wireless
networks and vehicular networks. In Jan et al. (2018) , the au-
thors adopt the idea of defense in depth to design a two-tier
detection mechanism. The basic idea of the first defense line
is that two high-energy nodes calculate the ratio of RSSI at two
different time intervals. If the ratio is same for multiple node
identifiers, the sybil nodes are detected. The second defense
line detects sybil nodes if the residual energy field of control
packets from suspected nodes are same. However, malicious
sybil nodes can easily evade the detection of two-tier mech-
anism by either adaptively adjust signal strength of attack
packets or misreport their residual energy in control packets.
The authors in Yao et al. (2019) propose a power control identi-
fication scheme to detect a sybil attack in vehicular networks.
Dissimilar to Jan et al. (2018) that considers constant trans-
mission power, the adversary can intentionally control sig-
nal strength when launching attack. By identifying divergent
variations in RSSI time series, an adversary can be detected
through a linear support-vector machine classifier. However,
this machine learning based technique is not applicable to IoT
because of non-negligible computational overhead. 

In Mishra et al. (2019) , the authors analyze the character-
istics and features of sybil attacks in IoT, and suggest that
sybil attacks can be categorized into three phases, namely:
compromise, deployment, and launching. In Vasudeva and
Sood (2018) , the authors focus on the sybil attack in ad hoc
networks, and classify existing detection schemes into seven
categories such as cryptography-based approach, radio activ-
ity verification, RSSI-based approach, time variation of signal
arrivals, monitoring-based approach, movement constraint-
based approach, and trust-based scheme. They also discuss
strengths and weaknesses of each technique with various sce-
narios. However, no recommendation on potential improve-
ment to further extend the existing techniques is presented. 

We remark that our proposed solution shares some simi-
larity with that of Kaliyar et al. (2020) , since both approaches
require an additional data structure. However, our work relies
on Bloom filter array and PUF, which significantly reduce the
processing time complexity and memory cost. Therefore, our
solution has less computational overhead while guaranteeing
detection accuracy and latency. 

3. Background 

3.1. RPL routing protocol 

The routing protocol for Low Power and Lossy Networks (RPL)
Winter et al. (2012) is designed to comply with the require-
ments of resource and communication constrained networks.
In these networks, devices (later nodes) are constrained by
processor capability, memory size, and battery energy, while
communication links are circumscribed by low data rate but
high error rate. 

In RPL, a set of nodes is self-organized into a tree-like struc-
ture, which is known as DODAG. The latter is constructed from
the DODAG root, a special node, which serves as a gateway
between DODAG and Internet. In large networks, nodes can
form into multiple DODAGs, and one or more DODAGs sharing
with the same RPL instance ID can work as one RPL instance.
Each RPL instance might be responsible for different task (i.e.,
one instance transfers temperature data and another instance
monitors the movements of people), and can operate indepen-
dently of other instances. In addition, three communication
modes are supported in RPL. These are multipoint-to-point
(or many-to-one), point-to-multipoint (or one-to-many), and
point-to-point (or one-to-one). Multipoint-to-point communi-
cation is adopted when other nodes want to forward the in-
formation to DODAG root, while point-to-multipoint commu-
nication is used by DODAG root to issue command/instruction
to other nodes. Point-to-point communication is provided for
any two nodes in DODAG to communicate. 

To realize all functionalities, RPL defines four control pack-
ets: DAG Information Object (DIO), Destination Advertisement
Object (DAO), Destination Advertisement Object Acknowledg-
ment (DAO-ACK), and DAG Information Solicitation (DIS). The
DIO packet is used to construct and maintain DODAG, build
multipoint-to-point routing path, and help new nodes dis-
cover nearby DODAG. The DAO packet is created to build point-
to-multipoint routing path, while DAO-ACK packet is gener-
ated to acknowledge the receipt of DAO packet. The DIS packet
is issued by a node (especially new node) to solicit DODAG in-
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Fig. 1 – A simplified RPL-based IoT, where three DODAGs work as two RPL instances. 
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ormation. Fig. 1 demonstrates a simplified RPL-based IoT sys- 
em, comprising three DODAGs and two RPL instances. 

.2. Trickle algorithm and DIO transmission 

he Trickle algorithm Levis et al. (2011) is designed as a lo- 
al communication protocol to adaptively and efficiently re- 
olve information inconsistency. Based on the local consis- 
ency model, a node can dynamically adjust packet rate via 
ne-tuning transmission window. 

PRL adopts the Trickle algorithm to control the transmis- 
ion rate of DIO packets. The rationale behind this design 

s that the DIO packet contains network related information 

hich can be used by other nodes to find RPL instance and 

ODAG, gain configuration parameters, and choose a parent 
et, and thus the transmission of DIO packets should be care- 
ully regulated. When a node detects an inconsistency (i.e., re- 
eiving DIO packet with inconsistent packet information or 
eceiving DIS packet from a new node), it quickly increases 
IO packet transmission rate (i.e., several packets per second) 

o resolve the inconsistency. However, if the local information 

s consistent, it slows down DIO packet transmission through 

ecreasing transmission rate exponentially (i.e., a few packets 
er hour). The Trickle algorithm uses the following six param- 
ters to control the timer of DIO packet transmission. 

• I min : the minimum interval size. 
• I max : the maximum interval size. 
• k : the redundancy constant. 
• I: the current interval size. 
• t: a time within the current interval. 
• c : a counter variable. 

The Trickle algorithm regulated DIO packet transmission is 
escribed in Algorithm 1 . 

.3. Sybil attack and its impact 

PL DIS packet might be issued by a new node to solicit 
 DIO packet from neighbor nodes, so that it can join the 
earby DODAG. However, an adversary can abuse DIS pack- 
ts to launch sybil attack. To be specific, an adversary can 

ntentionally broadcast an extravagant amount of DIS pack- 
ts piggybacked with fake node identifiers. When a legitimate 
ode receives attack DIS packets, it believes that new nodes 
re willing to join the network. According to RPL and Trickle 
lgorithm, the legitimate node has to repeatedly reset its DIO 

rickle timer and broadcast the same amount of DIO packets,
hich consumes extensive amount of limited battery energy. 

Taking DODAG A in Fig. 1 as an example, an adversary A 

roadcasts an attack DIS packet with fake identity to attack 
egitimate node n 1 , n 2 , and n 4 . Here, n 1 and n 2 are bridge nodes,

hich play a key role in connecting DODAG root with the rest 
f nodes. When n 1 and n 2 receive DIS packet, they assume that 
 new node is soliciting a DIO packet with network related in- 
ormation to join DODAG. Thus, both n 1 and n 2 reset their DIO 

rickle timer to I min , and broadcast DIO packet as a response.
ere, since n 1 and n 2 are not direct neighbors, a DIO packet 

rom one node does not suppress DIO packet from another 
ode. If the adversary A broadcasts an extravagant amount of 
IS packets piggybacked with fake identities, n 1 and n 2 will 
eed to reply the same amount of DIO packets. Frequent re- 
eiving and sending packets can quickly exhaust n 1 ’s and n 2 ’s 
imited battery energy, which makes their lifetime extremely 
hort. When they run out of battery energy, the network par- 
ition will be formed. 

Please note that the Trickle algorithm is integrated in RPL 
outing protocol, and playing an important role in optimizing 
he dissemination of network information in RPL-based IoT. If 
PL routing protocol did not adopt Trickle algorithm to regu- 

ate the dissemination rate of DIO packets (i.e., adjust the size 
f transmission window), the RPL-specific sybil attack that is 
eing investigated in this paper will not exist. However, tra- 
itional sybil attack always exists in IoT networks where the 
ommunication medium is open and broadcast. 

To demonstrate the impact of sybil attack, we conduct pre- 
iminary experiments in DODAG A as shown in Fig. 1 . In the
imulation, we set I min = 0.1 second, I max = 6,554 seconds,
nd k = 1 according to Levis et al. (2011) . First, we measure
he change of DIO Trickle timer against simulation time (total: 
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Fig. 2 – The change of DIO Trickle timer against simulation time. 

Fig. 3 – The number of broadcasted DIO packets against simulation time. 

Fig. 4 – The change of energy consumption against simulation time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10,000 seconds) in Fig. 2 . Without sybil attack, the length of DIO
Trickle timer exponentially increases according to Trickle al-
gorithm, and finally reaches 8977.61 seconds. When there are
new nodes joining with a rate assumed to be exponentially
distributed with a mean 500 (i.e., exponential(500)), the length
of DIO Trickle timer fluctuates between 11.52 and 1204.22 sec-
onds. However, when DODAG A is under sybil attack, the timer
is frequently reset to I min , thus, the length of timer is ob-
served to be varying between 0.13 and 68.096 seconds. Second,
we measure the number of broadcasted DIO packets against
simulation time in Fig. 3 . Under sybil attack, the number of
broadcasted DIO packets increases linearly as the simulation
time elapses. However, the number of broadcasted DIO pack-
ets is extremely low in the scenarios of no sybil attack and
new nodes joining. Third, the change of energy consumption
against simulation time is shown in Fig. 4 . It is clear to see that
sybil attack causes the energy consumption of DODAG A sig-
nificantly to increase as the simulation time increases, com-
pared to the scenarios of no sybil attack and new nodes join-
ing. This is because attack DIS packets make neighbor nodes
(i.e., n 1 , n 2 , and n 4 ) perform a huge amount of DIS receiving
and DIO broadcasting operations, resulting in significant in-
crease in energy consumption. Fourth, the energy consump-
tion of each node in three different scenarios is observed in
Fig. 5 . Since there is a nearby adversary, node n 1 , n 2 , and n 4
consume a larger amount of energy compared to other nodes
in DODAG A. Finally, the DIS and DIO packet statistics are ob-
served for each node in Fig. 6 . Node n 1 , n 2 , and n 4 are neigh-
bors of adversary, thus, they receive a large number of attack
DIS packets, and also broadcast many DIO packets as a re-
sponse. From these preliminary results, we learned that sybil
attack has a huge impact on RPL-based IoT, and it is extremely
important to detect sybil attack and reduce its negative
impact. 
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Fig. 5 – The performance of energy consumption for each 

node. 
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. Preliminary 

.1. System model 

e assume IoT encompasses various DODAG-like networks,
here nodes are constrained in terms of communication 

ange, memory size, processor capability, and battery energy.
or a simple presentation, only one DODAG is adopted to de- 
ict the proposed work in the following. We also assume that 
ach node is assigned an m -bit number as the unique node 
dentifier (i.e., m is 48 if Media Access Control (MAC) address 
s adopted). According to Newsome et al. (2004) , sybil attack is 
efined as an adversary unethically claiming numerous fake 

dentities, and can be described in three orthogonal dimen- 
ions: i) how to communicate with legitimate nodes; ii) how 

o obtain fake identities; and iii) how to use fake identities. In 

his paper, we consider that an adversary broadcasts attack 
ackets with different fabricated identities directly to legiti- 
ate nodes. For example, if MAC address is adopted to identify 

ach node, the adversary can randomly produce a fabricated 

AC address and use it as node identifier in the attack packet.
Fig. 6 – DIS and DIO packet s
n addition, the adversary is assumed to be intelligent and will 
daptively adjust the attack packet rate and the attack pat- 
ern to avoid detection by packet rate monitoring mechanism 

u et al. (2018) . Similar to many other works, we assume that
he adversary does not have resource constraint. 

IoT nodes usually necessitate long-time functioning for 
ays or weeks in the area of interest. Assume that a node 

s furnished with two standard AA batteries (typical energy: 
8,720 Joules), if it is extremely involved in monitoring and 

ommunicating operations, its lifetime is approximate 5.8 
ays Pu et al. (2014) . As a result, it is inescapable to replace or
efill batteries to maintain regular operations. However, nodes 

ight be deployed in figurative and literal places that are 
nattainable, which makes replacing or refilling batteries im- 
ossible or extremely challenging. Thus, deploying new nodes 

i.e., using drone) to replace dead or damaged nodes might be 
 more cost-effective approach Mnasri et al. (2014) . 

.2. Bloom filter 

 Bloom filter Bloom (1970) is a well-known space-efficient 
robabilistic data structure and has been used in various ap- 
lication domains such as weak password detection, proxy 
ache algorithm, information synchronization in blockchain.
pecifically, a Bloom filter, denoted as B = { W, K, N}, is an array
f W bits and maps one of N elements to one of the K array 
ositions using K contrasting hash functions in a rapid and 

emory efficient manner. Fig. 7 demonstrates the operation 

rocess of Bloom filter. When adding an element, the Bloom 

lter feeds the element into K contrasting hash functions to 
alculate K array positions, and then sets the bit at those K
tatistics for each node. 
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Fig. 8 – Example of PUF usage for device authentication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 – Overview of our approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

array positions to ‘‘1’’. When checking the presence of an el-
ement, the Bloom filter computes the array positions of the
element using K hash functions, and affirms that the element
is in the set if and only if all those K array positions have ‘‘1’’.
Otherwise, the element is believed not to be in the set. 

4.3. Physical unclonable function 

A physical unclonable function (PUF)
Shamsoshoara et al. (2020) is deliberately designed in light
of the facts that there are minor physical variations in each
integrated circuit (IC). Based on this unique property, a PUF
can be adopted as a physical identity of electronic Pu and
Li (2020) , comparable to biometrics such as palm print, hand
geometry, etc. In general, a PUF is designed as a physically
disordered one-way system that accepts an input, called
‘‘challenge’’, and produces an output, called ‘‘response’’.
Here, the challenge and its corresponding response are called
as a challenge-response pair (CRP) which is unique to each
PUF. Since PUFs are designed purposely so that the CRP has
close relationship with the physical variations in the IC, the
response of PUF is a result of the challenge as well as a result
of PUF’s physical variations. When the same challenge is
fed into the same PUF multiple times, the same response
will be generated with high probability. Nonetheless, distinct
PUFs will output totally different responses with the same
challenge. For simplicity, a PUF function, denoted as F pu f , can
be represented as 

R = F pu f (C) . (1)

Here, C and R is the input challenge and output response of
PUF, respectively. An example of PUF usage for device authen-
tication is shown in Fig. 8 , where IC A always produces the
same response (11001110) when it is provided with the chal-
lenge (01011101). However, the same challenge (01011101) at
IC B results in different response (11101011). In addition, a
minor change in the challenge (i.e., 01011101 and 01011100)
will make IC B produce disparate responses (i.e., 11101011 and
10110111). 

4.4. Overview of our approach 

Our approach is composed of sybil attack detection mecha-
nism (named as liteSAD ) and attack impact relief mechanism
(referred as proDIO ). In liteSAD , DODAG root generates a Bloom
filter array through hashing each legitimate node’s identifier
and PUF response, and distributes it through a new packet
named BF-DAO. Each legitimate node retrieves the Bloom fil-
ter array from the received BF-DAO packet and updates its lo-
cal copy. When an adversary broadcasts an attack DIS packet
with fake node identifier and PUF response, the legitimate
node accesses the local Bloom filter array to check whether
the claimed node identifier and PUF response are a member of
the Bloom filter array. If there is a match, the legitimate node
continues to operate as the original Trickle algorithm speci-
fied, i.e., resetting DIO Trickle timer to I min . Otherwise, the le-
gitimate node detects sybil attack and proceeds with attack
impact relief mechanism. In proDIO , the legitimate node does
not reset DIO Trickle timer to I min , but probabilistically decides
whether to reply DIO packet instead. A flowchart of our ap-
proach is shown in Fig. 9 . 

Since a media access control (MAC) address is a unique
identifier assigned to a network interface controller for use
as a network address in communications within a network,
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AC address can be used as the unique node identifier in this 
aper. In that case, the PUF response becomes a function of 
AC address as well as a function of PUF’s physical disorder. In 

ddition, we argue that the Bloom filter scheme cannot be re- 
oved from the proposed approach. If the Bloom filter scheme 

or the Bloom filter array) were removed, each node in RPL- 
ased IoT has to store and maintain the node identifier (i.e.,
8 bits MAC address) of all other nodes. When we consider a 
arge-scale IoT network, storing a large number of node identi- 
ers in the limited memory is not practical. In addition, when 

he topology structure of IoT network changes (i.e., adding or 
emoving nodes), the list of node identifiers stored in each 

ode has to be updated accordingly by DODAG root, which re- 
ults in a significant communication overhead. 

. The proposed mechanisms 

.1. Sybil attack detection mechanism 

 set of legitimate nodes is deployed in an area of inter- 
st and automatically forms a DODAG by following DODAG 

onstruction process. After that, DODAG root retrieves the 
ode identifier and the PUF response of each legitimate node,

eeds them to K hash functions to compute K array posi- 
ions, and sets the bits at these K array positions to ‘‘1’’ to 
reate the Bloom filter array. In this paper, each legitimate 
ode should be registered at DODAG root before being added 

nto the network. The rationale behind this design is that 
ODAG root can securely obtain each legitimate node’s iden- 

ifier and PUF response using the time-based OTP algorithm 

TOTP) mechanism M’Raihi et al. (2011) . If we adopt MAC ad- 
ress mac as node identifier, the PUF response can be cal- 
ulated as F pu f (mac ) . After generating the Bloom filter array,
ODAG root encloses the Bloom filter array in a BF-DIO packet,
nd distributes BF-DIO packet to other nodes through DODAG 

ownward routes. BF-DIO packet is inherited from DIO packet.
n addition, each legitimate node continuously monitors its 
esidual energy, and informs DODAG root that it will run out 
f battery energy soon by issuing a DAO packet according to 
ODAG upward routes. To frequently update the Bloom filter 
rray, over each update window period � , DODAG root records 
 list of existing DODAG nodes, a list of dying-soon nodes, and 

 list of new nodes, which are denoted by S exg , S die , and S new 

, re-
pectively. When � ends, DODAG root uses the identifier and 

he PUF response of each node in the set, [ S exg − S die ∪ S new 

], to
reate a new Bloom filter array and distribute it to other nodes.

When a legitimate node receives BF-DIO packet, it extracts 
he Bloom filter array and updates its local copy. Then, the 
egitimate node forwards BF-DIO packet to child node(s). BF- 
IO packet will be propagated along downward routes until 

t reaches the leaf nodes in DODAG. During this process, an 

dversary may eavesdrop on the on-flying BF-DIO packet and 

nject false information or modify its packet content. How- 
ver, if a sender can authenticate BF-DIO packet with a light- 
eight digital signature Stallings (2016) , a receiver can eas- 

ly verify the packet and detect any modification. In this pa- 
er, we primarily focus on RPL-specific sybil attack that can- 
ot be detected by digital signatures and cryptographic prim- 

tives. When a legitimate node receives a DIS packet from a 
ew node, it retrieves the piggybacked node identifier and PUF 
esponse, computes K array positions using K hash functions,
nd checks the presence of new node in the local Bloom fil- 
er array. If all these K array positions have ‘‘1’’, the legitimate 
ode resets its DIO Trickle timer to I min and continues with 

riginal Trickle algorithm. Otherwise, DIS packet is believed 

o be from adversary, and the number of sybil attack detec- 
ion cnt atk is increased by one. After that, the legitimate node 
ontinues with attack impact relief mechanism, which is de- 
cribed below. The sybil attack detection mechanism is de- 
cribed in Algorithm 2 . 

.2. Attack impact relief mechanism 

n order to reduce the impact of sybil attack, the legitimate 
ode does not reset DIO Trickle timer to I min after detecting 
ybil attack, but probabilistically decides whether to reply DIO 

acket instead. To be specific, the legitimate node updates the 
roadcasting probability of DIO packet prob dio through the low- 
ass filter with a filter gain constant α

prob dio = α · prob prev 
dio + (1 − α) · prob new 

dio , (2) 

here prob prev 
dio is the previous broadcasting probability of DIO 

acket. prob new 

dio is the new broadcasting probability of DIO 

acket calculated based on the most recent sybil attack de- 
ection rate, which can be represented as 

prob new 

dio = β + γ · e 1 −rt det ·δ. (3) 

ere, e denotes the exponential function and β, γ , and δ are de- 
igned as system parameters. The rationale behind using the 
xponential function is that the broadcasting probability of 
IO packet can quickly decline if sybil attack exists. The pur- 
ose of each parameter is that β prevents prob new 

dio from reach- 
ng zero, γ is adopted to boost the broadcasting probability of 
IO packet, and δ influences the varying rate of prob new 

dio . In ad- 
ition, rt det is the sybil attack detection rate which is calcu- 

ated according to 

t det = 

cnt atk 

cnt dis 
. (4) 

ere, cnt atk and cnt dis is the number of sybil attack detection 

nd the number of received DIS packets, respectively. The le- 
itimate node randomly generates a floating-point number 
and[0,1], and then compares it with prob dio . If the random 

umber is larger than or equal to prob dio , it broadcasts the 
cheduled DIO packet. Otherwise, it just discards DIS packet 
nd continues with original Trickle algorithm. The attack im- 
act relief mechanism is described in Algorithm 3 . 

In general, security attacks can be classified into passive 
ttacks and active attacks. The goal of passive attacks is to 
earn or make use of information from the system but does not 
ffect system resources, while active attacks try to alter sys- 
em resources or affect their operation. Since passive attacks 
nd active attacks have different characteristics, the main fo- 
us of active attack countermeasures is to detect active at- 
acks and recover from any disruption or delays caused by 
hem Stallings (2016) . In this paper, RPL-specific sybil attack 
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Fig. 10 – The change of the probability of false positive 
against the number of different hash functions and the 
number of elements in the set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

can be classified as an active attack that causes the legitimate
nodes to consume extensive amount of (limited) battery en-
ergy. Thus, we propose an attack impact relief mechanism to
reduce the impact of sybil attack. The potential advantage for
legitimate nodes is that they can reduce the number of replied
DIO packets, and then save energy resource. Since the pro-
posed mechanism is a defense scheme against sybil attack,
there is no potential advantage for the adversary. 

6. Probability of false positive analysis 

When testing the presence of an element in Bloom filter array,
if ‘‘1’’ has been set at all K array positions, then the element is
probably in the set. If any of K array positions has ‘‘0’’, then the
element is not in the set affirmatively. Thus, the probability
of false positive, or false positive rate, is possible, which indi-
cates that non-member element might be incidentally tested
as a member in the set. Please note that false negative is not
possible for Bloom filter. 

Suppose that a Bloom filter is denoted as B = { W, K , N },
where W indicates a W-bit Bloom filter array, K means the
number of different hash functions, and N specifies the total
number of elements in the set. According to the classic analy-
sis approach in Mullin (1983) , the probability that an arbitrary
position is not set with ‘‘1’’ in the W-bit Bloom filter array is 

prob SB = 1 − 1 
W 

. (5)

Thus, the probability that an arbitrary position of K array po-
sitions is not set with ‘‘1’’ can be calculated as 

prob K = (prob SB ) 
K = (1 − 1 

W 

) K . (6)

Analogously, the probability that an arbitrary position is not
set with ‘‘1’’ for N elements is represented as 

prob �N = (prob K ) 
N = (1 − 1 

W 

) K·N . (7)

Thus, the probability that an arbitrary position is set with ‘‘1’’
is 

prob �N = (1 − prob �N ) = 1 − (1 − 1 
W 

) K·N . (8)

Finally, for K different hash functions, the probability of false
positive can be computed as, 

prob false = (prob �N ) 
K = 

(
1 − (1 − 1 

W 

) K·N )K . (9)

According to Christensen et al. (2010) , the probability of false
positive prob false can be approximated as 

prob approx 
false = 

(
1 − e −( K·N 

W 

) )K , (10)

which is a function of W, K, and N. Clearly, the size of Bloom
filter array W and the number of elements (or nodes) N de-
pends on the characteristics of IoT nodes and the scale of IoT
network, respectively. Thus, the probability of false positive
prob false is closely related to the number of hash functions K.
In the following, we will justify the setting of these three pa-
rameters. 

IoT nodes are usually small and constrained in terms of
memory size and other aspects. For example, three classes of
constrained IoT nodes are defined in Bormann et al. (2014) ,
where the memory size of the most constrained nodes is less
than 10 KBytes. Thus, the size of Bloom filter array W should
meet the memory requirement of constrained IoT nodes. In
addition, different IoT application might desire different num-
ber of IoT nodes. Taking the outdoor urban application sce-
nario as an example, the number of IoT nodes deployed in
the urban environment is expected to be in the order of 10 2

to 10 7 Dohler et al. (2009) . Speaking of K, the number of dif-
ferent hash functions, it must be an integer and should be
chosen with the consideration of computational overhead.
Fig. 10 demonstrates the change of the probability of false pos-
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Fig. 11 – The performance of detection rate against attack 

DIS message rate (exponential interval). 
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tive prob false with varying number of different hash functions 
nd number of elements in the set. As shown in Fig. 10 (a), a
arger W results in a lower probability of false positive. When 

is equal to or larger than 3,200 bits, the number of differ- 
nt hash functions does not impact the probability of false 
ositive significantly. In Fig. 10 (b), as the number of elements 

n the set increases, the probability of false positive also in- 
reases. However, a lower probability of false positive is ob- 
ained with a larger number of different hash functions. Based 

n the above analysis, we empirically set W = 3,200, N = 250,
nd K = 8, where the probability of false positive is approxi- 
ate 0.002176. Apparently, the probability of false positive is 

ery small and could be ignored. 
In this paper, after generating the Bloom filter array, DODAG 

oot encloses the Bloom filter array in a BF-DIO packet, and 

istributes BF-DIO packet to other nodes through DODAG 

ownward routes. Please note that BF-DIO packet is inherited 

rom DIO packet. According to Winter et al. (2012) , the RPL 
ontrol message (i.e., DIO packet) is designed in accordance 
ith ICMPv6 message Conta et al. (1998) , which consists of an 

CMPv6 header followed by a message body. The size of ICMPv6 
eader is 4 bytes. The message body is comprised of a message 
ase and possibly a number of varying-size options. As speci- 
ed in Winter et al. (2012) , the size of DIO message base is 20
ytes. Thus, the average size of BF-DIO packet is 424 bytes. 

. Performance evaluation 

.1. Simulation testbed and benchmarks 

e develop an event-driven simulation framework using OM- 
eT++ Varga (2014) and conduct extensive simulation exper- 

ments to evaluate the performance of our mechanisms ( lite- 
AD and proDIO ). We deploy DODAG A as shown in Fig. 1 in a
00 × 100 m 

2 network area. DODAG A constitutes one DODAG 

oot, eight normal nodes, and one adversary. Please note that 
iteSAD and proDIO are distributed mechanisms, thus, the size 
r the structure of network does not affect the effectiveness of 
ur mechanisms. The lognormal shadowing model is adopted 

o estimate the average path loss, where the signal delivery 
hreshold is set to -81, resulting in communication range to 
e 12.59 m. CC2420 defines the real radios of the same name 
y Texas Instruments, thus, it is selected to simulate the radio 
odel. The adversary generates attack DIS packets with a rate 
hich is exponentially distributed with a mean value between 

 and 30. We also simulate new nodes joining scenario, where 
ew nodes are added into the network with a rate which is 
xponentially distributed with a mean value 500. DODAG root 
enerates data packet every 15 seconds and randomly sends 
t to one of the leaf nodes (i.e., n 6 , n 7 , and n 8 ). The length of
imulation is 10,000 seconds. 

We measure the performance of detection rate, detec- 
ion latency, miss detection rate, DIO Trickle timer, number 
f broadcasted DIO packets, energy consumption, change of 

prob dio by varying various system parameters. For performance 
omparison, we select GINI Groves and Pu (2019) and Monitor 
haleb et al. (2019) as benchmarks and implement them in the 
imulation framework. We also consider ‘‘Without Counter- 
easure’’ as another benchmark to show performance (lower 
r upper) bound. The basic idea of GINI and Monitor are ex- 
lained in the following: 

• GINI : Each node records the node identities in the received 

DIS packets within a time period and calculates the dis- 
perisity of node identities based on Gini index theory. 
If the calculated Gini index value is larger than a threshold 

value, sybil attack can be detected. 
• Monitor : Each node counts the number of received DIS 

packets from neighbor nodes within a time period. 
If the number of received DIS packets is larger than a pre- 
defined threshold value, the node detects sybil attack in 

the network. 

.2. Simulation results and analysis 

irst, we measure the detection rate of our mechanism lite- 
AD + proDIO as well as GINI and Monitor by varying the ex-
onential interval of attack DIS packet in Fig. 11 . Please note 
hat a larger exponential interval results in a lower attack DIS 
acket rate, while a higher attack DIS packet rate is generated 

ith a smaller exponential interval. liteSAD + proDIO shows the 
etection rate as high as 95%, and most importantly, the at- 
ack DIS packet rate does not affect the detection rate. In lite- 
AD + proDIO , each node checks the node identity in the re- 
eived attack DIS packet with the local Bloom filter array,
hich can accurately detect fictitious node identity and PUF 

esponse. However, randomly generated fictitious node iden- 
ity and PUF response in the attack DIS packets might collide 
ith real and legitimate node identity and PUF response in 

he network, thus, a very few attack DIS packets might not be 
etected. In addition, random packet loss due to bad chan- 
el quality might affect detection rate as well. As the expo- 
ential interval of attack DIS packet increases (i.e., less num- 
er of attack DIS packets are being generated), the detection 

ate of GINI and Monitor decrease. This is because each node 
eceives less number of attack DIS packets within a window 
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Fig. 12 – The performance of detection latency against 
attack DIS message rate (exponential interval). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 – The performance of miss detection rate against 
attack DIS message rate (exponential interval). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

period. When comparing with the threshold value, the attack
detection requirement does not meet. Thus, a decreasing de-
tection rate is observed by GINI and Monitor . Additionally, the
threshold value has a significant impact on the detection rate
of GINI , where a larger threshold value results in a lower de-
tection rate. However, the detection rate of Monitor is not very
sensitive to the threshold value when the exponential interval
of attack DIS packet increases. 

Second, we measure the detection latency with changing
attack DIS packet rate in Fig. 12 . Here, the detection latency is
recorded as the amount of time taken to detect sybil attack
100 times. Please note that the more times sybil attack are de-
tected, the longer the detection latency is. As the exponential
interval of attack DIS packet increases, the detection latency
of our mechanism liteSAD + proDIO increases as well. Since less
number of attack DIS packets are generated and broadcasted
by adversary, it is straightforward that more time is required to
detect sybil attack 100 times. When the exponential interval is
between 1 and 10, GINI with T H 

gini 
dec = 0.8 is able to detect sybil

attack 100 times with a larger detection latency, compared to
liteSAD + proDIO . However, as the number of attack DIS pack-
ets decreases (i.e., the exponential interval increases from 10
to 30), the detection latency of GINI with T H 

gini 
dec = 0.8 reaches

0, which indicates that the goal of detecting sybil attack 100
times was not achieved. In addition, Monitor with T H 

mon 
dec = 0.3

or 0.5, and GINI with T H 

gini 
dec = 0.9 cannot detect enough sybil

attack before the simulation ends. 
Third, the miss detection rate of all three mechanisms are

obtained with different attack DIS packet rates in Fig. 13 . The
miss detection rate of GINI with T H 

gini 
dec = 0.9 is not available,

which is showing as 0. As the interval of attack DIS packet
increases, the miss detection rate of GINI with T H 

gini 
dec = 0.8 in-

creases. Since less number of attack DIS packets are gener-
ated, more sybil attack cannot be detected, resulting in an in-
creasing miss detection rate. For Monitor with different T H 

mon 
dec ,

the miss detection rate increases as the exponential interval
of attack DIS packet increases. This is because less number
of attack DIS packets makes DIS packet rate less than T H 

mon 
dec .

As a result, sybil attack is miss-detected. Our mechanism lite-
SAD + proDIO outperforms GINI and Monitor , achieving the miss
detection rate as low as 5%. 

Fourth, we obtain the change of DIO Trickle timer against
simulation time in Fig. 14 . Overall, a longer DIO Trickle timer is
obtained by our mechanism liteSAD + proDIO . When attack DIS
packet is detected, there is a probability that the legitimate
node does not reset DIO Trickle timer to I min . Thus, a longer
DIO Trickle timer can be obtained. However, for GINI and Moni-
tor , the length of DIO Trickle timer is fluctuating between 0 and
40 seconds. Since GINI and Monitor do not have any response
mechanism against attack DIS packets, their DIO Trickle timer
is always reset to I min when attack DIS packet is received. In
addition, we also measure the change of DIO Trickle timer in
the scenario of ‘‘Without Countermeasure’’. 

Fifth, we measure the number of broadcasted DIO pack-
ets and energy consumption as the simulation time elapses
in Fig. 15 and Fig. 16 , respectively. As shown in Fig. 15 , less
number of DIO packets are broadcasted by our mechanism
liteSAD + proDIO . In liteSAD + proDIO , each legitimate node prob-
abilistically decides to reset its DIO Trickle timer and broad-
cast DIO packet when sybil attack is detected. Thus, less num-
ber of DIO packets are broadcasted. It is no doubt that the
largest number of DIO packets will be broadcasted when there
is no countermeasure (i.e., ‘‘Without Countermeasure’’ sce-
nario) in the network. Compared to Monitor , less number of
DIO packets are broadcasted by GINI because GINI reduces
DIO replying rate after successfully detecting sybil attack. As
shown in Fig. 16 , the lowest energy consumption is obtained
by our mechanism liteSAD + proDIO , while the highest energy
consumption belongs to ‘‘Without Countermeasure’’ scenario.
Please note that the energy consumption is closely related to
the number of received attack DIS packets and the number of
broadcasted DIO packets. If a larger number of DIO packets
are broadcasted by a mechanism, a higher energy consump-
tion should be obtained by the mechanism. 
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Fig. 14 – The change of DIO Trickle timer against simulation time. 

Fig. 15 – The change of broadcasted DIO packets against simulation time. 

Fig. 16 – The change of energy consumption against simulation time. 
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Sixth, we obtain the number of broadcasted DIO packets 
nd the energy consumption for each node in Fig. 17 and 

ig. 18 , respectively. As shown in Fig. 17 , our mechanism lite- 
AD + proDIO causes node n 1 , n 2 , and n 4 to broadcast the small-
st number of DIO packets. This is because when n 1 , n 2 , and
 4 detect fictitious attack DIS packet, they randomly decide 
hether to reply DIO packet. Thus, a large number of DIO 

acket broadcastings can be avoided by liteSAD + proDIO . Com- 
ared to ‘‘Without Countermeasure’’ scenario, less number of 
IO packets are broadcasted by GINI and Monitor . Even though 

INI and Monitor cannot detect sybil attack as efficient as lite- 
AD + proDIO , they still can contribute to defend against sybil 
ttack. As shown in Fig. 18 , our mechanism liteSAD + proDIO can 

ignificantly save nodes’ (i.e., n 1 , n 2 , and n 4 ) limited energy 
esources by reducing the number of broadcasted DIO pack- 
ts. Since the energy consumption is calculated based on the 
umber of broadcasted DIO packets, the lowest energy con- 
umption is obtained by liteSAD + proDIO . 

Seventh, we observe the change of prob dio of node n 1 , n 2 , and
 4 against simulation time in Fig. 19 . As the adversary contin- 
ously generates and broadcasts attack DIS packets with fic- 
itious identities and PUF responses, liteSAD can first detect 
ttack DIS packets and increase the detection rate. Then, pro- 
IO is able to quickly adjust the probability ( prob dio ) of resetting 
IO Trickle timer and broadcasting DIO packets accordingly. It 

s clearly shown that prob dio can be maintained between 0.28 
nd 0.3. Whit this low probability, a large number of DIO pack- 
ts can be avoided and the impact of sybil attack can be signifi- 
antly reduced. Please note that prob dio is closely related to the 
etting of parameters including α, β, γ , and γ . Thus, prob dio can 

e adjusted for subjective preference with different parameter 
etting. 
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Fig. 17 – The number of broadcasted DIO packets for each 

node. 

Fig. 18 – The performance of energy consumption for each 

node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19 – The change of prob dio for node n 1 , n 2 , and n 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eighth, we measure the change of DIO Trickle timer by
varying the setting of parameters such as α, β, γ , and δ in
Fig. 20 . As shown in Fig. 20 (a), α with a larger value will re-
sult in a longer DIO Trickle timer in general. In Fig. 20 (b), as we
increase the value of β, the length of DIO Trickle timer slightly
decreases. The impact of γ on the length of DIO Trickle timer
is observed in Fig. 20 (c). Overall, a larger γ results in a longer
DIO Trickle timer. Finally, the length of DIO Trickle timer is
recorded with different value of δ. We can clearly see that a
smaller δ will produce a larger DIO Trickle timer. 

Ninth, the number of broadcasted DIO packets is measured
with varying α, β, γ , and δ in Fig. 21 . As shown in Fig. 21 (a), the
value of α seems not have significant impact on the number
of broadcasted DIO packets. In Fig. 21 (b), a smaller β clearly re-
sults in less number of broadcasted DIO packets. According to
Eq. (3) , a smaller β creates a lower bound of prob new 

dio , which re-
sults in a lower prob dio . Thus, a smaller probability prob dio can
be obtained with a smaller β, and less number of DIO packets
will be broadcasted. In Fig. 21 (c), a larger γ causes less num-
ber of DIO packets to be broadcasted. This is because a smaller
prob dio can be obtained with a larger γ . When we increase the
value of δ, more DIO packets will be broadcasted. The reason is
that a larger δ generates a smaller power to exponent e . Thus,
a larger prob dio can be achieved, which causes more DIO pack-
ets to be broadcasted. In Fig. 22 , we measure the performance
of energy consumption against α, β, γ , and δ. Since the en-
ergy consumption is strongly associated with the number of
broadcasted DIO packets, the energy consumption has a simi-
lar trend as the number of broadcasted DIO packets as shown
in Fig. 21 . Finally, we measure the performance of detection
rate, detection latency, and miss detection rate against α, β,
and γ in Fig. 23 . Overall, the parameter setting does not have
close relationship with the performance of detection rate, de-
tection latency, and miss detection rate. 

8. Discussion 

8.1. The design of Trickle algorithm and its potential 
improvement 

In a lossy environment, how to exchange information in a ro-
bust, energy-efficient and scalable manner becomes a chal-
lenging task. The Trickle algorithm Levis et al. (2011) is re-
garded as an adaptive communication mechanism to main-
tain information consistency over a shared wireless medium.
According to the level of local information consistency, a node
can fine-tune its message transmission rate dynamically. Ac-
cording to the RPL specification Winter et al. (2012) , one of de-
sign requirements is that the RPL routing protocol shall pro-
vide a mechanism to disseminate information over the dy-
namically formed network topology. This information dissem-
ination should enable minimal configuration in the nodes,
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Fig. 20 – The performance of DIO Trickle timer against α, β, γ, and δ. 

Fig. 21 – The number of broadcasted DIO packets against α, β, γ, and δ. 

Fig. 22 – The performance of energy consumption against α, β, γ, and δ. 
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llowing nodes to operate mostly autonomously. To meet 
his design requirement, the RPL routing protocol deservedly 
dopts the Trickle algorithm to optimize the information dis- 
emination. However, the Trickle algorithm specification does 
ot have any specific security considerations Levis et al. (2011) .
s a result, the security concern might arise when it is used in 

he RPL routing protocol. For example, an adversary can force 
odes to send many more packets than needed by forcing 
rickle timer resets. In the IoT networks, this traffic increase 

an harm network lifetime. c
Since the proposal of the Trickle algorithm specification 

n 2011, a number of researchers have attempted to opti- 
ize its performance and proposed other improvements to 

he Trickle algorithm. For example, the authors in Goyal and 

hand (2017) propose an approach to resolve the load balanc- 
ng issue in the Trickle algorithm. The basic idea is that the re- 
undancy parameter k is set to zero at the time of suppression 

r transmission of the DIO packets, which can solve the load 

alancing problem as well as reduce the energy and power 
onsumption. In Djamaa et al. (2017) , the authors propose to 
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Fig. 23 – The performance of detection rate, detection latency, and miss detection rate against α, β, and γ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

integrate contextual information with the Trickle algorithm to
minimize the latency of information dissemination in the IoT
networks. To be specific, the link quality information and lo-
cal network information are being utilized by the Trickle algo-
rithm so that the information can be propagated faster. The
authors in Lamaazi et al. (2019) present a flexible Trickle al-
gorithm. Based on the time parameter and the minimum in-
terval values, the flexible Trickle algorithm can reduce the in-
formation dissemination delay. Unfortunately, none of above-
mentioned approaches can successfully address the vulner-
ability of adversarial Trickle timer resets in the Trickle algo-
rithm. 

To prevent adversarial timer resets in the original Trickle
algorithm, we would like to make the following sugges-
tion. The Trickle algorithm can be configured to carefully se-
lect what can cause a timer reset and protect these events
and messages with proper security mechanism. For exam-
ple, if a node can reset nearby Trickle timers by sending
a certain packet, this packet should be authenticated (see
Sub section 8 .2.) such that an adversary cannot forge one. 

8.2. PUF-based authentication protocols for IoT networks 

In this paper, we primarily focus on the RPL-specific sybil at-
tack that cannot be detected by digital signatures and crypto-
graphic primitives. Thus, in this subsection, we plan to discuss
the PUF-based authentication protocols that can be used as an
additional defensive line to secure Trickle algorithm as well as
IoT networks. 

Recently, several PUF-based security protocols and tech-
niques have been proposed for IoT networks. In Li et al. (2020) ,
the authors propose an end-to-end mutual authentication
and key exchange protocol for IoT networks by combining
PUF with certificateless public key cryptography on elliptic
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Algorithm 1: Trickle algorithm in RPL. 

Input: I min , I max , k 
Output: I, t, c 

1 Function Init( I min ) : 
/* sets timer I to the first interval */ 

2 I ← I min ; 
3 return I; 

4 Function NewIntvl() : 
/* doubles the interval length */ 

5 I ← I × 2; 
/* sets a counter variable c to 0 */ 

6 c ← 0; 
/* sets the interval length to I max */ 

7 if I max ≤ I then 

8 I ← I max ; 
9 end 

/* sets t to a random point in interval */ 

10 t ← rand [ I 2 , I ]; 
11 return t; 

12 Function RecConsTrans() : 
/* increases counter variable c */ 

13 c ← c + 1; 
14 return c ; 

15 Function RecConsTrans() : 
16 if I min < I then 

/* resets timer I */ 

17 I ← I min ; 
18 end 
19 return I; 

20 Function TimerExp() : 
21 if c < k then 

/* c less than redundancy constant k */ 

22 Transmit scheduled DIO; 
23 else 
24 Suppress scheduled DIO; 
25 end 
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Algorithm 2: Sybil attack detection mechanism. 

Input: pkt[ n id , r id , l oad, t ype ] 
/* A packet containing a node ID ( n id ), PUF response ( r id ), 

payload ( load ), and packet type ( type ). Here, type can be 
either DIO or DIS ; load can be Bloom filter array B cur 

issued at the time cur . */ 

/* receive pkt[ n R , dio] from DODAG root n R */ 

1 Function UpdateBloom( pkt [ n R , nul l , B cur , dio] ) : 
/* extract B cur from pkt[ dio] */ 

2 B tmp ← pkt[ B cur ] .extract(); 
/* update local Bloom filter array B local */ 

3 B local .update( B tmp ); 
/* forward pkt[ dio] to child node(s) n fwd */ 

/* Set child is child node set */ 

4 for fwd ← i ∈ Set child do 
5 forward( pkt[ dio] , n fwd ); 
6 end 

/* receive pkt[ n a , r a , nul l , dis ] from node n a */ 

7 Function DetAttack( pkt[ n a , r a , nul l , dis ] ) : 
/* retrieve node identifier */ 

8 id tmp ← pkt[ n a ] .extract(); 
/* retrieve PUF response */ 

9 r tmp ← pkt[ r a ] .extract(); 
/* compute K array positions */ 

10 for i ← j ∈ | K| do 
11 y i ← hash i (id tmp | r tmp ); 

/* Y is the set of K array positions */ 

12 Y ← Y ∪ y i ; 
13 end 

/* check the presence of Y in B local */ 

14 if B local .match(Y) then 

/* receive legitimate DIS packet */ 

15 Continue with original Trickle algorithm; 
16 else 

/* receive attack DIS packet */ 

/* detect sybil attack and increase attack detection 

counter cnt atk */ 

17 cnt atk ← cnt atk + 1; 
18 Continue with attack impact relief mechanism; 
19 end 

/* DODAG root n R issues DIO packet with new Bloom filter 
array when � ends */ 

20 Function SendBloom() : 
21 for id tmp ← i ∈ [ S exg − S die ∪ S new ] do 
22 for i ← j ∈ | K| do 
23 y i ← hash i (id tmp | r tmp ); 
24 Y ← Y ∪ y i ; 
25 end 
26 B cur ← B cur ∪ Y; 
27 end 
28 for fwd ← i ∈ Set child do 
29 forward( pkt[ n R , B cur , dio] , n fwd ); 
30 end 

8
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urve. The proposed security protocol only needs ‘‘three hand- 
hakes’’ without the real-time participation of the server. Ac- 
ording to the experimental study, the proposed security pro- 
ocol can achieve better performance in terms of security fea- 
ures and communication cost. In Ebrahimabadi et al. (2021) ,
he authors propose a security protocol to defend against 

odeling attacks by limiting the adversary’s ability to inter- 
ept the whole challenge bits exchanged with IoT nodes. The 
asic idea is to split the challenge bits over multiple messages 
nd engage one or multiple helper nodes in the dissemina- 
ion process. The experimental results show the effectiveness 
f the proposed methods in boosting the robustness of IoT 

uthentication. The authors in Liang et al. (2021) propose a 
utual authentication scheme for RFID systems, where Deep 

earning (DL) technique is incorporated onto the Arbiter Phys- 
cal Unclonable Function (APUF) for the secured access au- 
hentication of the IC circuits in IoT networks. In addition,
hrough extensive experiments, the authors prove that the 
roposed scheme has high robustness and security against 
ifferent conventional attack methods. In summary, the prior 
UF-based authentication protocols can be integrated with 

ur mechanisms to fully protect IoT networks from security 
ttacks. 
.3. The immunity against traditional sybil attacks 

n this subsection, we discuss the liteSAD and see 
hether it can successfully detect traditional sybil attacks 
ewsome et al. (2004) in the IoT networks. 

The basic idea of liteSAD is that the network gateway gen- 
rates a Bloom filter array through hashing each legitimate 
ode’s identifier and PUF response, and distributes it through 
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Algorithm 3: Attack impact relief mechanism. 

Input: cnt atk , cnt dis 

Output: prob dio 

/* update broadcasting probability of DIO */ 

1 Function UpdateProbDIO( cnt atk , cnt dis ) : 
/* calculate new attack detection rate */ 

2 rt det = 
cnt atk 
cnt dis 

; 

/* calculate recent broadcasting prob. */ 

3 prob new 
dio = β + γ · e 1 −rt det ·δ ; 

/* update broadcasting probability */ 

4 prob dio = α · prob prev 
dio + (1 - α) · prob new 

dio ; 
5 return prob dio ; 

/* probabilistically broadcast DIO packet */ 

6 Function BcastDIO( pkt[ n id , in fo, null, dio] ) : 
/* generate a random number */ 

7 temp ← rand[0, 1]; 
/* decide whether to broadcast DIO */ 

8 if prob dio ≤ temp then 

/* broadcast DIO packet */ 

9 forward( pkt[ n id , in fo, null, dio] , broadcast ); 
10 else 
11 discard DIS packet; 
12 continue with original Trickle algorithm; 
13 end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a control packet. Each legitimate node retrieves the Bloom fil-
ter array from the received control packet and updates its lo-
cal copy. When an adversary broadcasts an attack packet with
fake node identifier and PUF response, the legitimate node
accesses the local Bloom filter array to check whether the
claimed node identifier and PUF response are a member of
the Bloom filter array. If there is a match, the legitimate node
continues to operate as the routing algorithm specified. Oth-
erwise, the legitimate node detects sybil attack and proceeds
with the attack impact relief mechanism ( proDIO ). In sum-
mary, our mechanism liteSAD is designed to use the node iden-
tifier information piggybacked in the packets to detect any
potential sybil attacks in the IoT networks. As a result, if the
adversary broadcasts attack packets with the fabricated iden-
tities, the legitimate nodes can successfully detect the sybil
attacks. Thus, our mechanism liteSAD can successfully detect
traditional sybil attacks in the IoT networks. 

9. Conclusion 

In this paper, we investigated sybil attack and proposed two
mechanisms: liteSAD and proDIO . The basic idea of liteSAD is
that DODAG root generates a Bloom filter array through hash-
ing each normal node’s identifier and response of physical
unclonable function (PUF), and distributes it through a new
packet named BF-DAO. When a legitimate node receives a DIS
packet, it checks whether the claimed node identifier and PUF
response are a member of the local Bloom filter array. If there
is no match, the legitimate node successfully detects sybil at-
tack. In proDIO , each node probabilistically decides whether
to reset DIO Trickle timer and reply DIO packet after detect-
ing sybil attack, which can significantly reduce the number of
broadcasted DIO packets. We also provided a theoretical anal-
ysis to investigate the setting of Bloom filter parameters to
minimize the false positive and time complexity while meet-
ing the requirement of memory constraints in IoT devices. To
evaluate the performance of our mechanisms liteSAD + proDIO ,
we developed an event-driven simulation framework, com-
pared our mechanisms with existing approaches, and con-
ducted extensive simulation experiments. The simulation re-
sults demonstrate that liteSAD + proDIO can extensively im-
prove detection rate, detection latency, DIO Trickle timer, as
well as reduce miss detection rate, the number of broadcasted
DIO packets, and energy consumption. In summary, the pa-
per makes the following contributions to the IoT community.
First, we investigate the RPL routing protocol, which is a well-
known and widely used IoT routing protocol. The compre-
hensive analysis of RPL routing protocol, Trickle algorithm,
and the impact of sybil attack will provide deeper knowledge
on RPL-based IoT and its potential security issues. Second,
we propose a lightweight sybil attack detection mechanism
based on Bloom filter and PUF. The proposed research will
have important implications for other security mechanisms
in the IoT networks, and will provide design considerations to
the broader IoT community seeking new research directions.
Speaking of future work, we plan to implement and deploy a
real-world testbed consisting of Tmote nodes in an office envi-
ronment, where the complete capacity of liteSAD + proDIO can
be explored. 
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