
c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

TC 11 Briefing Papers

Lightweight Sybil Attack Detection in IoT

based on Bloom Filter and Physical Unclonable

Function

Cong Pu

a , 1 , ∗, Kim-Kwang Raymond Choo

b , 2

a Department of Computer Sciences and Electrical Engineering, Marshall University, Huntington, WV 25755, United
States
b Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX

78249, United States

a r t i c l e i n f o

Article history:

Received 31 March 2021

Revised 3 November 2021

Accepted 7 November 2021

Available online 12 November 2021

Keywords:

Sybil attack

Lightweight detection

Bloom filter

Physical unclonable function

IoT

a b s t r a c t

Routing protocols play an important role in the communication and information distribu-

tion within an Internet of Things (IoT) system. RPL is one such popular routing protocol for

IoT devices and systems. However, security in RPL is an afterthought, and it does not meet

the demands of today’s complex cyberthreat landscape. Focusing on sybil attack detection

in RPL-based IoT, we first propose a lightweight Bloom filter and physical unclonable func-

tion (PUF) based sybil attack detection mechanism (hereafter referred to as liteSAD). Our

approach is designed to minimize memory cost as well as detection latency, without af-

fecting the detection accuracy. Specifically, in liteSAD , Destination-Oriented Directed Acyclic

Graph (DODAG) root generates a Bloom filter array through hashing each legitimate node’s

identifier and PUF response, and distributes it through a new packet named BF-DAO. Upon

receiving the BF-DAO packet, each legitimate node retrieves the Bloom filter array, updates

its local copy, and employs it to detect sybil attack. We also propose a probabilistic DIO reply

mechanism (i.e., proDIO) to reduce the number of broadcasted DIO packets in response to

attack DIS packets. We investigate the setting of Bloom filter parameters that minimize the

probability of false positive and time complexity while meeting the requirement of mem-

ory constraints in IoT devices. We also evaluate the performance of our mechanism lite-

SAD + proDIO through extensive simulation experiments, where the results demonstrate that

liteSAD + proDIO can provide better performance in terms of detection rate, detection latency,

miss detection rate, DIO Trickle timer, number of broadcasted DIO packets, and energy con-

sumption. In summary, our major contributions are twofold: (i) the comprehensive analysis

of RPL routing protocol, Trickle algorithm, and the impact of sybil attack; and (ii) the proposal

of lightweight Bloom filter and PUF based sybil attack detection mechanism.

© 2021 Elsevier Ltd. All rights reserved.
∗ Corresponding author.:.
E-mail addresses: puc@marshall.edu (C. Pu), raymond.choo@fulbrigh

1 Member, IEEE.
2 Senior Member, IEEE.

https://doi.org/10.1016/j.cose.2021.102541
0167-4048/© 2021 Elsevier Ltd. All rights reserved.
tmail.org (K.-K.R. Choo).

https://doi.org/10.1016/j.cose.2021.102541
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2021.102541&domain=pdf
mailto:puc@marshall.edu
mailto:raymond.choo@fulbrightmail.org
https://doi.org/10.1016/j.cose.2021.102541

2 c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1

1

T
o
d
a
s
(
a
g

a
y
t

c

s
a
t
i
f

a

i
d
n
c
l
w
C
f

i

A
a
p
a
c
t
n
w
R
i
b
D
p
g
e
c
s
c
m
G
m
s
n
q

b
t
a

t
t
a
i
p

e
i
p
r
a

I
L
I
d
c
r
i
i
l

S
s
n
g

T
t
t
i
l
t

T
i

a
w
n

S
B

s

S

2

S
t
o
a

f
t
a
t
m
s
fi
t

t
o
d

. Introduction

he concept of Internet of Things (IoT), a distributed network
f smart physical objects communicating with each other and

istributing intelligence to humans Tange et al. (2020) , is now

 norm in our society. Applications of IoT can be found in con-
umer environment (e.g., smart city), industrial environment
e.g., Industry 4.0), etc. The trend and continued interest in IoT

re partly fueled by advances in other supporting technolo-
ies, such as 5G and artificial intelligence (AI). For example,
ccording to a study by GSMA Intelligence’s Research & Anal-
sis Intelligence (2019) , the productivity benefits of IoT are es-
imated to be worth around $370 billion per annum in 2025,
omprising 0.34% of global GDP.

There are a number of challenges associated with the de-
ign and implementation of IoT devices and systems. For ex-
mple, how do we achieve secure and efficient communica-
ion in an IoT environment? This is partly achieved using rout-
ng protocols, such as the widely used Cisco‘s routing protocol
or Low-Power and Lossy Networks Morrow (2015) . The latter,
lso referred to as RPL in the literature Winter et al. (2012) ,
s designed to work on routing resource-constrained (IoT)
evices. A number of other routing protocols, such as cog-
itive routing, stable election routing, opportunistic power
ontrolled routing, point-to-point routing, and shufed frog
eaping optimization based routing, have been designed to
ork in an IoT setting Al-Turjman (2019) ; Behera et al. (2019) ;
outinho et al. (2020) ; Djamaa et al. (2021) ; Jazebi and Ghaf-

ari (2020) .
Similar to many other systems and protocols, functional-

ty is often the design priority and security is an afterthought.
s a result, many efficient routing protocols are not secure
gainst common attacks, particularly in the increasingly com-
lex cyberthreat environment. For example, RPL has several
ttractive features such as automatic configuration, network
hange adaptation, loop detection and avoidance, and mul-
iple network instances Winter et al. (2012) , but it is vul-
erable to both common attacks inherent of wireless net-
ork and RPL-specific attacks Raoof et al. (2018) ; Verma and

anga (2020) . One particularly destructive RPL-specific attack
s sybil attack Pu (2020) , where an adversary intentionally
roadcasts an extravagant number of Destination-Oriented

irected Acyclic Graph (DODAG) Information Solicitation (DIS)
ackets piggybacked with fake node identifiers. When a le-
itimate node receives attack DIS packets, it has to repeat-
dly reset its DIO Trickle timer Levis et al. (2011) and broad-
ast DODAG Information Object (DIO) packets, which con-
umes extensive amount of (limited) battery energy. This is
learly a significant concern in an IoT setting. Although some
echanisms Airehrour et al. (2019) ; Althubaity et al. (2020) ;

roves and Pu (2019) ; Kaliyar et al. (2020) ; Murali and Ja-
alipour (2019) have been proposed to detect and mitigate

ybil attack in RPL-based IoT, they either have high commu-
ication and computation overheads or do not meet the re-
uirement of memory constraints of IoT devices.

In this paper, we focus on sybil attack detection in RPL-
ased IoT systems, and minimizing the impact of sybil at-
ack. Specifically, we first propose a lightweight Bloom filter
nd physical unclonable function (PUF) based sybil attack de-
t
ection mechanism (i.e., liteSAD), in order to detect sybil at-
ack in a distributed manner. In liteSAD , DODAG root generates
 Bloom filter array through hashing each legitimate node’s
dentifier and PUF response, and distributes it through a new

acket named BF-DAO. After receiving the BF-DAO packet,
ach legitimate node retrieves the Bloom filter array, updates
ts local copy, and employs it to detect sybil attack. Then, we
ropose a probabilistic DIO reply mechanism (i.e., proDIO) to
educe the number of broadcasted DIO packets in response to
ttack DIS packets.

Our work is novel in terms of three aspects: RPL-based

oT, Bloom Filter + Physical Unclonable Function (PUF), and

ightweight Countermeasure. First, we focus on RPL-based

oT which is an active area of research and development en-
eavors by many technical and commercial communities. Our
omprehensive analysis of RPL routing protocol, Trickle algo-
ithm, and sybil attack will provide an in-depth understand-
ng of RPL-based IoT and its potential security issues. Most
mportantly, it demonstrates the importance of efficient and

ightweight countermeasures in the protection of IoT systems.
econd, we propose a lightweight Bloom filter and PUF based

ybil attack detection mechanism. While neither Bloom filter
or PUF are new techniques, using Bloom filter and PUF to-
ether to defend against sybil attack in RPL-based IoT is new.
hird, our sybil attack countermeasure is designed based on

wo lightweight techniques: Bloom filter and PUF. Compared

o most existing approaches relying on an implicit overhear-
ng or using non-negligible data structure, our approach has
ower attack detection overhead while maintaining high de-
ection accuracy and low detection latency.

The remaining parts of the paper is organized as follows.
he extant literature on sybil attack detection is discussed

n Section 2 . In Section 3 , we provide an overview of RPL
nd analyze the impact of sybil attack. We present the net-
ork and adversary models, and review the relevant tech-
iques in Section 4 . In Section 5 , we present our proposed lite-
AD and proDIO , prior to presenting the theoretical analysis of
loom filter parameter setting in Section 6 . In Section 7 , we de-
cribe our experimental setup and discuss the results. Finally,
ection 9 summarizes our paper.

. Related work

ince the design of RPL Winter et al. (2012) was presented in

he early 2010s, there have been a number of studies focusing
n both vulnerability identification and exploitation, as well
s attack mitigation, in RPL-based IoT systems. In Pu (2020) ,
or example, the author studies the different measures of sta-
istical dispersion and proposes a Gini coefficient based mech-
nism to detect sybil attack in an IoT system, where the sta-
istical dispersion of node identifiers in attack DIS packets is

easured within an observation time period and the corre-
ponding Gini coefficient is then calculated. If the Gini coef-
cient is larger than a threshold value, then it is determined

hat a sybil attack most likely exists in the network. However,
he detection accuracy and latency depend on the length of
bservation time period – a short time period results in low

etection accuracy but short detection latency, while a long
ime period produces high detection accuracy as well as long

c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1 3

detection latency. In addition, there could be a high false neg-
ative rate if the threshold value is not set properly.

A trust system (a combination of direct and indirect
trust) is proposed to detect and isolate sybil attack nodes in
Airehrour et al. (2019) . The basic idea is to assign more weight
to the current trust value rather than the historical trust value
when evaluating the behaviors of a node. When an adversary
masquerades as a new node with fake identifier, it will not
be involved in routing activities because of a low trust value.
This technique can detect and isolate the adversary, but it will
also prevent legitimate new nodes from involving any routing
activities. The authors in Kaliyar et al. (2020) propose to set
up the sybil detection table, an additional data structure, at
every non-leaf node in the tree-like network. When a node re-
ceives a packet, it retrieves the identifiers of source node and
previous-hop node, and checks the sybil detection table for
an entry with matching source node identifier. If no matching
entry is found, a new entry with the retrieved identifier infor-
mation is added to the sybil detection table. If an entry with
the same source node identifier is found but the previous-hop
node identifier is different, the node issues an alarm packet
to report the detection of sybil attack. However, a key limi-
tation with this approach is that computational overhead is
closely related to the size of the sybil detection table. For in-
stance, a larger number of entries in the sybil detection table
will cause an increase in energy consumption, processing la-
tency as well as memory cost. In Murali and Jamalipour (2019) ,
the authors use artificial bee colony model to analyze the be-
haviors of sybil attacks, and then propose a detection mech-
anism. The proposed approach is a monitoring-based mecha-
nism, where each node maintains a counter variable to record
the number of control messages received from each neighbor
node. In addition, each node will also track the time interval of
exchanged control messages with neighbor nodes. While this
approach can detect an adversary with constant attack rate, it
will fail if the adversary intermittently varies the rate of attack
traffic.

Another line of work is to detect sybil attacks in wireless
networks and vehicular networks. In Jan et al. (2018) , the au-
thors adopt the idea of defense in depth to design a two-tier
detection mechanism. The basic idea of the first defense line
is that two high-energy nodes calculate the ratio of RSSI at two
different time intervals. If the ratio is same for multiple node
identifiers, the sybil nodes are detected. The second defense
line detects sybil nodes if the residual energy field of control
packets from suspected nodes are same. However, malicious
sybil nodes can easily evade the detection of two-tier mech-
anism by either adaptively adjust signal strength of attack
packets or misreport their residual energy in control packets.
The authors in Yao et al. (2019) propose a power control identi-
fication scheme to detect a sybil attack in vehicular networks.
Dissimilar to Jan et al. (2018) that considers constant trans-
mission power, the adversary can intentionally control sig-
nal strength when launching attack. By identifying divergent
variations in RSSI time series, an adversary can be detected
through a linear support-vector machine classifier. However,
this machine learning based technique is not applicable to IoT
because of non-negligible computational overhead.

In Mishra et al. (2019) , the authors analyze the character-
istics and features of sybil attacks in IoT, and suggest that
sybil attacks can be categorized into three phases, namely:
compromise, deployment, and launching. In Vasudeva and
Sood (2018) , the authors focus on the sybil attack in ad hoc
networks, and classify existing detection schemes into seven
categories such as cryptography-based approach, radio activ-
ity verification, RSSI-based approach, time variation of signal
arrivals, monitoring-based approach, movement constraint-
based approach, and trust-based scheme. They also discuss
strengths and weaknesses of each technique with various sce-
narios. However, no recommendation on potential improve-
ment to further extend the existing techniques is presented.

We remark that our proposed solution shares some simi-
larity with that of Kaliyar et al. (2020) , since both approaches
require an additional data structure. However, our work relies
on Bloom filter array and PUF, which significantly reduce the
processing time complexity and memory cost. Therefore, our
solution has less computational overhead while guaranteeing
detection accuracy and latency.

3. Background

3.1. RPL routing protocol

The routing protocol for Low Power and Lossy Networks (RPL)
Winter et al. (2012) is designed to comply with the require-
ments of resource and communication constrained networks.
In these networks, devices (later nodes) are constrained by
processor capability, memory size, and battery energy, while
communication links are circumscribed by low data rate but
high error rate.

In RPL, a set of nodes is self-organized into a tree-like struc-
ture, which is known as DODAG. The latter is constructed from
the DODAG root, a special node, which serves as a gateway
between DODAG and Internet. In large networks, nodes can
form into multiple DODAGs, and one or more DODAGs sharing
with the same RPL instance ID can work as one RPL instance.
Each RPL instance might be responsible for different task (i.e.,
one instance transfers temperature data and another instance
monitors the movements of people), and can operate indepen-
dently of other instances. In addition, three communication
modes are supported in RPL. These are multipoint-to-point
(or many-to-one), point-to-multipoint (or one-to-many), and
point-to-point (or one-to-one). Multipoint-to-point communi-
cation is adopted when other nodes want to forward the in-
formation to DODAG root, while point-to-multipoint commu-
nication is used by DODAG root to issue command/instruction
to other nodes. Point-to-point communication is provided for
any two nodes in DODAG to communicate.

To realize all functionalities, RPL defines four control pack-
ets: DAG Information Object (DIO), Destination Advertisement
Object (DAO), Destination Advertisement Object Acknowledg-
ment (DAO-ACK), and DAG Information Solicitation (DIS). The
DIO packet is used to construct and maintain DODAG, build
multipoint-to-point routing path, and help new nodes dis-
cover nearby DODAG. The DAO packet is created to build point-
to-multipoint routing path, while DAO-ACK packet is gener-
ated to acknowledge the receipt of DAO packet. The DIS packet
is issued by a node (especially new node) to solicit DODAG in-

4 c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1

Fig. 1 – A simplified RPL-based IoT, where three DODAGs work as two RPL instances.

f
t

3

T
c
s
t
fi

s
i
w
D
s
f
c
r
D
t
i
d
p
e

d

3

R
a

n
e
i
e
n
a
a
T

w

b
l

w
o
a
f
T

H
f
n
D
n
c
l
s
t

r
t
R
l
o
b
d
c

l

s

a

t

ormation. Fig. 1 demonstrates a simplified RPL-based IoT sys-
em, comprising three DODAGs and two RPL instances.

.2. Trickle algorithm and DIO transmission

he Trickle algorithm Levis et al. (2011) is designed as a lo-
al communication protocol to adaptively and efficiently re-
olve information inconsistency. Based on the local consis-
ency model, a node can dynamically adjust packet rate via
ne-tuning transmission window.

PRL adopts the Trickle algorithm to control the transmis-
ion rate of DIO packets. The rationale behind this design

s that the DIO packet contains network related information

hich can be used by other nodes to find RPL instance and

ODAG, gain configuration parameters, and choose a parent
et, and thus the transmission of DIO packets should be care-
ully regulated. When a node detects an inconsistency (i.e., re-
eiving DIO packet with inconsistent packet information or
eceiving DIS packet from a new node), it quickly increases
IO packet transmission rate (i.e., several packets per second)

o resolve the inconsistency. However, if the local information

s consistent, it slows down DIO packet transmission through

ecreasing transmission rate exponentially (i.e., a few packets
er hour). The Trickle algorithm uses the following six param-
ters to control the timer of DIO packet transmission.

• I min : the minimum interval size.
• I max : the maximum interval size.
• k : the redundancy constant.
• I: the current interval size.
• t: a time within the current interval.
• c : a counter variable.

The Trickle algorithm regulated DIO packet transmission is
escribed in Algorithm 1 .

.3. Sybil attack and its impact

PL DIS packet might be issued by a new node to solicit
 DIO packet from neighbor nodes, so that it can join the
earby DODAG. However, an adversary can abuse DIS pack-
ts to launch sybil attack. To be specific, an adversary can

ntentionally broadcast an extravagant amount of DIS pack-
ts piggybacked with fake node identifiers. When a legitimate
ode receives attack DIS packets, it believes that new nodes
re willing to join the network. According to RPL and Trickle
lgorithm, the legitimate node has to repeatedly reset its DIO

rickle timer and broadcast the same amount of DIO packets,
hich consumes extensive amount of limited battery energy.

Taking DODAG A in Fig. 1 as an example, an adversary A

roadcasts an attack DIS packet with fake identity to attack
egitimate node n 1 , n 2 , and n 4 . Here, n 1 and n 2 are bridge nodes,

hich play a key role in connecting DODAG root with the rest
f nodes. When n 1 and n 2 receive DIS packet, they assume that
 new node is soliciting a DIO packet with network related in-
ormation to join DODAG. Thus, both n 1 and n 2 reset their DIO

rickle timer to I min , and broadcast DIO packet as a response.
ere, since n 1 and n 2 are not direct neighbors, a DIO packet

rom one node does not suppress DIO packet from another
ode. If the adversary A broadcasts an extravagant amount of
IS packets piggybacked with fake identities, n 1 and n 2 will
eed to reply the same amount of DIO packets. Frequent re-
eiving and sending packets can quickly exhaust n 1 ’s and n 2 ’s
imited battery energy, which makes their lifetime extremely
hort. When they run out of battery energy, the network par-
ition will be formed.

Please note that the Trickle algorithm is integrated in RPL
outing protocol, and playing an important role in optimizing
he dissemination of network information in RPL-based IoT. If
PL routing protocol did not adopt Trickle algorithm to regu-

ate the dissemination rate of DIO packets (i.e., adjust the size
f transmission window), the RPL-specific sybil attack that is
eing investigated in this paper will not exist. However, tra-
itional sybil attack always exists in IoT networks where the
ommunication medium is open and broadcast.

To demonstrate the impact of sybil attack, we conduct pre-
iminary experiments in DODAG A as shown in Fig. 1 . In the
imulation, we set I min = 0.1 second, I max = 6,554 seconds,
nd k = 1 according to Levis et al. (2011) . First, we measure
he change of DIO Trickle timer against simulation time (total:

c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1 5

Fig. 2 – The change of DIO Trickle timer against simulation time.

Fig. 3 – The number of broadcasted DIO packets against simulation time.

Fig. 4 – The change of energy consumption against simulation time.

10,000 seconds) in Fig. 2 . Without sybil attack, the length of DIO
Trickle timer exponentially increases according to Trickle al-
gorithm, and finally reaches 8977.61 seconds. When there are
new nodes joining with a rate assumed to be exponentially
distributed with a mean 500 (i.e., exponential(500)), the length
of DIO Trickle timer fluctuates between 11.52 and 1204.22 sec-
onds. However, when DODAG A is under sybil attack, the timer
is frequently reset to I min , thus, the length of timer is ob-
served to be varying between 0.13 and 68.096 seconds. Second,
we measure the number of broadcasted DIO packets against
simulation time in Fig. 3 . Under sybil attack, the number of
broadcasted DIO packets increases linearly as the simulation
time elapses. However, the number of broadcasted DIO pack-
ets is extremely low in the scenarios of no sybil attack and
new nodes joining. Third, the change of energy consumption
against simulation time is shown in Fig. 4 . It is clear to see that
sybil attack causes the energy consumption of DODAG A sig-
nificantly to increase as the simulation time increases, com-
pared to the scenarios of no sybil attack and new nodes join-
ing. This is because attack DIS packets make neighbor nodes
(i.e., n 1 , n 2 , and n 4) perform a huge amount of DIS receiving
and DIO broadcasting operations, resulting in significant in-
crease in energy consumption. Fourth, the energy consump-
tion of each node in three different scenarios is observed in
Fig. 5 . Since there is a nearby adversary, node n 1 , n 2 , and n 4
consume a larger amount of energy compared to other nodes
in DODAG A. Finally, the DIS and DIO packet statistics are ob-
served for each node in Fig. 6 . Node n 1 , n 2 , and n 4 are neigh-
bors of adversary, thus, they receive a large number of attack
DIS packets, and also broadcast many DIO packets as a re-
sponse. From these preliminary results, we learned that sybil
attack has a huge impact on RPL-based IoT, and it is extremely
important to detect sybil attack and reduce its negative
impact.

6 c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1

Fig. 5 – The performance of energy consumption for each

node.

4

4

W

w
r

F
p
e
i
i
d
i
s
t
t
p
m
e
M

Fig. 7 – Bloom filter operation process.

I
a
t
P

t

d
i
1
c
d

r
m
u
p
(
a

4

A
p
p
c

S

o
p
m
p
fi
c

. Preliminary

.1. System model

e assume IoT encompasses various DODAG-like networks,
here nodes are constrained in terms of communication

ange, memory size, processor capability, and battery energy.
or a simple presentation, only one DODAG is adopted to de-
ict the proposed work in the following. We also assume that
ach node is assigned an m -bit number as the unique node
dentifier (i.e., m is 48 if Media Access Control (MAC) address
s adopted). According to Newsome et al. (2004) , sybil attack is
efined as an adversary unethically claiming numerous fake

dentities, and can be described in three orthogonal dimen-
ions: i) how to communicate with legitimate nodes; ii) how

o obtain fake identities; and iii) how to use fake identities. In

his paper, we consider that an adversary broadcasts attack
ackets with different fabricated identities directly to legiti-
ate nodes. For example, if MAC address is adopted to identify

ach node, the adversary can randomly produce a fabricated

AC address and use it as node identifier in the attack packet.
Fig. 6 – DIS and DIO packet s
n addition, the adversary is assumed to be intelligent and will
daptively adjust the attack packet rate and the attack pat-
ern to avoid detection by packet rate monitoring mechanism

u et al. (2018) . Similar to many other works, we assume that
he adversary does not have resource constraint.

IoT nodes usually necessitate long-time functioning for
ays or weeks in the area of interest. Assume that a node

s furnished with two standard AA batteries (typical energy:
8,720 Joules), if it is extremely involved in monitoring and

ommunicating operations, its lifetime is approximate 5.8
ays Pu et al. (2014) . As a result, it is inescapable to replace or
efill batteries to maintain regular operations. However, nodes

ight be deployed in figurative and literal places that are
nattainable, which makes replacing or refilling batteries im-
ossible or extremely challenging. Thus, deploying new nodes

i.e., using drone) to replace dead or damaged nodes might be
 more cost-effective approach Mnasri et al. (2014) .

.2. Bloom filter

 Bloom filter Bloom (1970) is a well-known space-efficient
robabilistic data structure and has been used in various ap-
lication domains such as weak password detection, proxy
ache algorithm, information synchronization in blockchain.
pecifically, a Bloom filter, denoted as B = { W, K, N}, is an array
f W bits and maps one of N elements to one of the K array
ositions using K contrasting hash functions in a rapid and

emory efficient manner. Fig. 7 demonstrates the operation

rocess of Bloom filter. When adding an element, the Bloom

lter feeds the element into K contrasting hash functions to
alculate K array positions, and then sets the bit at those K
tatistics for each node.

c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1 7

Fig. 8 – Example of PUF usage for device authentication.

Fig. 9 – Overview of our approach.

array positions to ‘‘1’’. When checking the presence of an el-
ement, the Bloom filter computes the array positions of the
element using K hash functions, and affirms that the element
is in the set if and only if all those K array positions have ‘‘1’’.
Otherwise, the element is believed not to be in the set.

4.3. Physical unclonable function

A physical unclonable function (PUF)
Shamsoshoara et al. (2020) is deliberately designed in light
of the facts that there are minor physical variations in each
integrated circuit (IC). Based on this unique property, a PUF
can be adopted as a physical identity of electronic Pu and
Li (2020) , comparable to biometrics such as palm print, hand
geometry, etc. In general, a PUF is designed as a physically
disordered one-way system that accepts an input, called
‘‘challenge’’, and produces an output, called ‘‘response’’.
Here, the challenge and its corresponding response are called
as a challenge-response pair (CRP) which is unique to each
PUF. Since PUFs are designed purposely so that the CRP has
close relationship with the physical variations in the IC, the
response of PUF is a result of the challenge as well as a result
of PUF’s physical variations. When the same challenge is
fed into the same PUF multiple times, the same response
will be generated with high probability. Nonetheless, distinct
PUFs will output totally different responses with the same
challenge. For simplicity, a PUF function, denoted as F pu f , can
be represented as

R = F pu f (C) . (1)

Here, C and R is the input challenge and output response of
PUF, respectively. An example of PUF usage for device authen-
tication is shown in Fig. 8 , where IC A always produces the
same response (11001110) when it is provided with the chal-
lenge (01011101). However, the same challenge (01011101) at
IC B results in different response (11101011). In addition, a
minor change in the challenge (i.e., 01011101 and 01011100)
will make IC B produce disparate responses (i.e., 11101011 and
10110111).

4.4. Overview of our approach

Our approach is composed of sybil attack detection mecha-
nism (named as liteSAD) and attack impact relief mechanism
(referred as proDIO). In liteSAD , DODAG root generates a Bloom
filter array through hashing each legitimate node’s identifier
and PUF response, and distributes it through a new packet
named BF-DAO. Each legitimate node retrieves the Bloom fil-
ter array from the received BF-DAO packet and updates its lo-
cal copy. When an adversary broadcasts an attack DIS packet
with fake node identifier and PUF response, the legitimate
node accesses the local Bloom filter array to check whether
the claimed node identifier and PUF response are a member of
the Bloom filter array. If there is a match, the legitimate node
continues to operate as the original Trickle algorithm speci-
fied, i.e., resetting DIO Trickle timer to I min . Otherwise, the le-
gitimate node detects sybil attack and proceeds with attack
impact relief mechanism. In proDIO , the legitimate node does
not reset DIO Trickle timer to I min , but probabilistically decides
whether to reply DIO packet instead. A flowchart of our ap-
proach is shown in Fig. 9 .

Since a media access control (MAC) address is a unique
identifier assigned to a network interface controller for use
as a network address in communications within a network,

8 c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1

M
p
M
a
m
(
b

4
l
fi
t
r
n
s

5

5

A
e
c
n

f
t
c
n
i
D
t
(
d
c

D

a
d

I
r
o
D
a
a
a

s
t

c

t
l
D
i
a
i
e
w
i
p
n
i

n
r

a
t
n
o
t
t
c
s
s

5

I
n
s
p
b
p

w
p
p
t

H
s
e
D
p
i
D
d
l

r

H
a
g
r
n
s
a
p

a
l
a
t
a
c
t
t

AC address can be used as the unique node identifier in this
aper. In that case, the PUF response becomes a function of
AC address as well as a function of PUF’s physical disorder. In

ddition, we argue that the Bloom filter scheme cannot be re-
oved from the proposed approach. If the Bloom filter scheme

or the Bloom filter array) were removed, each node in RPL-
ased IoT has to store and maintain the node identifier (i.e.,
8 bits MAC address) of all other nodes. When we consider a
arge-scale IoT network, storing a large number of node identi-
ers in the limited memory is not practical. In addition, when

he topology structure of IoT network changes (i.e., adding or
emoving nodes), the list of node identifiers stored in each

ode has to be updated accordingly by DODAG root, which re-
ults in a significant communication overhead.

. The proposed mechanisms

.1. Sybil attack detection mechanism

 set of legitimate nodes is deployed in an area of inter-
st and automatically forms a DODAG by following DODAG

onstruction process. After that, DODAG root retrieves the
ode identifier and the PUF response of each legitimate node,

eeds them to K hash functions to compute K array posi-
ions, and sets the bits at these K array positions to ‘‘1’’ to
reate the Bloom filter array. In this paper, each legitimate
ode should be registered at DODAG root before being added

nto the network. The rationale behind this design is that
ODAG root can securely obtain each legitimate node’s iden-

ifier and PUF response using the time-based OTP algorithm

TOTP) mechanism M’Raihi et al. (2011) . If we adopt MAC ad-
ress mac as node identifier, the PUF response can be cal-
ulated as F pu f (mac) . After generating the Bloom filter array,
ODAG root encloses the Bloom filter array in a BF-DIO packet,
nd distributes BF-DIO packet to other nodes through DODAG

ownward routes. BF-DIO packet is inherited from DIO packet.
n addition, each legitimate node continuously monitors its
esidual energy, and informs DODAG root that it will run out
f battery energy soon by issuing a DAO packet according to
ODAG upward routes. To frequently update the Bloom filter
rray, over each update window period � , DODAG root records
 list of existing DODAG nodes, a list of dying-soon nodes, and

 list of new nodes, which are denoted by S exg , S die , and S new

, re-
pectively. When � ends, DODAG root uses the identifier and

he PUF response of each node in the set, [S exg − S die ∪ S new

], to
reate a new Bloom filter array and distribute it to other nodes.

When a legitimate node receives BF-DIO packet, it extracts
he Bloom filter array and updates its local copy. Then, the
egitimate node forwards BF-DIO packet to child node(s). BF-
IO packet will be propagated along downward routes until

t reaches the leaf nodes in DODAG. During this process, an

dversary may eavesdrop on the on-flying BF-DIO packet and

nject false information or modify its packet content. How-
ver, if a sender can authenticate BF-DIO packet with a light-
eight digital signature Stallings (2016) , a receiver can eas-

ly verify the packet and detect any modification. In this pa-
er, we primarily focus on RPL-specific sybil attack that can-
ot be detected by digital signatures and cryptographic prim-

tives. When a legitimate node receives a DIS packet from a
ew node, it retrieves the piggybacked node identifier and PUF
esponse, computes K array positions using K hash functions,
nd checks the presence of new node in the local Bloom fil-
er array. If all these K array positions have ‘‘1’’, the legitimate
ode resets its DIO Trickle timer to I min and continues with

riginal Trickle algorithm. Otherwise, DIS packet is believed

o be from adversary, and the number of sybil attack detec-
ion cnt atk is increased by one. After that, the legitimate node
ontinues with attack impact relief mechanism, which is de-
cribed below. The sybil attack detection mechanism is de-
cribed in Algorithm 2 .

.2. Attack impact relief mechanism

n order to reduce the impact of sybil attack, the legitimate
ode does not reset DIO Trickle timer to I min after detecting
ybil attack, but probabilistically decides whether to reply DIO

acket instead. To be specific, the legitimate node updates the
roadcasting probability of DIO packet prob dio through the low-
ass filter with a filter gain constant α

prob dio = α · prob prev
dio + (1 − α) · prob new

dio , (2)

here prob prev
dio is the previous broadcasting probability of DIO

acket. prob new

dio is the new broadcasting probability of DIO

acket calculated based on the most recent sybil attack de-
ection rate, which can be represented as

prob new

dio = β + γ · e 1 −rt det ·δ. (3)

ere, e denotes the exponential function and β, γ , and δ are de-
igned as system parameters. The rationale behind using the
xponential function is that the broadcasting probability of
IO packet can quickly decline if sybil attack exists. The pur-
ose of each parameter is that β prevents prob new

dio from reach-
ng zero, γ is adopted to boost the broadcasting probability of
IO packet, and δ influences the varying rate of prob new

dio . In ad-
ition, rt det is the sybil attack detection rate which is calcu-

ated according to

t det =

cnt atk

cnt dis
. (4)

ere, cnt atk and cnt dis is the number of sybil attack detection

nd the number of received DIS packets, respectively. The le-
itimate node randomly generates a floating-point number
and[0,1], and then compares it with prob dio . If the random

umber is larger than or equal to prob dio , it broadcasts the
cheduled DIO packet. Otherwise, it just discards DIS packet
nd continues with original Trickle algorithm. The attack im-
act relief mechanism is described in Algorithm 3 .

In general, security attacks can be classified into passive
ttacks and active attacks. The goal of passive attacks is to
earn or make use of information from the system but does not
ffect system resources, while active attacks try to alter sys-
em resources or affect their operation. Since passive attacks
nd active attacks have different characteristics, the main fo-
us of active attack countermeasures is to detect active at-
acks and recover from any disruption or delays caused by
hem Stallings (2016) . In this paper, RPL-specific sybil attack

c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1 9

Fig. 10 – The change of the probability of false positive
against the number of different hash functions and the
number of elements in the set.

can be classified as an active attack that causes the legitimate
nodes to consume extensive amount of (limited) battery en-
ergy. Thus, we propose an attack impact relief mechanism to
reduce the impact of sybil attack. The potential advantage for
legitimate nodes is that they can reduce the number of replied
DIO packets, and then save energy resource. Since the pro-
posed mechanism is a defense scheme against sybil attack,
there is no potential advantage for the adversary.

6. Probability of false positive analysis

When testing the presence of an element in Bloom filter array,
if ‘‘1’’ has been set at all K array positions, then the element is
probably in the set. If any of K array positions has ‘‘0’’, then the
element is not in the set affirmatively. Thus, the probability
of false positive, or false positive rate, is possible, which indi-
cates that non-member element might be incidentally tested
as a member in the set. Please note that false negative is not
possible for Bloom filter.

Suppose that a Bloom filter is denoted as B = { W, K , N },
where W indicates a W-bit Bloom filter array, K means the
number of different hash functions, and N specifies the total
number of elements in the set. According to the classic analy-
sis approach in Mullin (1983) , the probability that an arbitrary
position is not set with ‘‘1’’ in the W-bit Bloom filter array is

prob SB = 1 − 1
W

. (5)

Thus, the probability that an arbitrary position of K array po-
sitions is not set with ‘‘1’’ can be calculated as

prob K = (prob SB)
K = (1 − 1

W

) K . (6)

Analogously, the probability that an arbitrary position is not
set with ‘‘1’’ for N elements is represented as

prob �N = (prob K)
N = (1 − 1

W

) K·N . (7)

Thus, the probability that an arbitrary position is set with ‘‘1’’
is

prob �N = (1 − prob �N) = 1 − (1 − 1
W

) K·N . (8)

Finally, for K different hash functions, the probability of false
positive can be computed as,

prob false = (prob �N)
K =

(
1 − (1 − 1

W

) K·N)K . (9)

According to Christensen et al. (2010) , the probability of false
positive prob false can be approximated as

prob approx
false =

(
1 − e −(K·N

W

))K , (10)

which is a function of W, K, and N. Clearly, the size of Bloom
filter array W and the number of elements (or nodes) N de-
pends on the characteristics of IoT nodes and the scale of IoT
network, respectively. Thus, the probability of false positive
prob false is closely related to the number of hash functions K.
In the following, we will justify the setting of these three pa-
rameters.

IoT nodes are usually small and constrained in terms of
memory size and other aspects. For example, three classes of
constrained IoT nodes are defined in Bormann et al. (2014) ,
where the memory size of the most constrained nodes is less
than 10 KBytes. Thus, the size of Bloom filter array W should
meet the memory requirement of constrained IoT nodes. In
addition, different IoT application might desire different num-
ber of IoT nodes. Taking the outdoor urban application sce-
nario as an example, the number of IoT nodes deployed in
the urban environment is expected to be in the order of 10 2

to 10 7 Dohler et al. (2009) . Speaking of K, the number of dif-
ferent hash functions, it must be an integer and should be
chosen with the consideration of computational overhead.
Fig. 10 demonstrates the change of the probability of false pos-

10 c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1

i
a

l
W
e
p
i
c
t
o

a
m
v

r
d
d
f
c
w
I
h
b
fi

b

7

7

W
N
i
S

1
r
l
o
o
t
t
b
b
m
w
1
n
e
g
i

s

t
o

c
G
s
m

Fig. 11 – The performance of detection rate against attack

DIS message rate (exponential interval).

o
p

7

F
S

p
t
p
w
d
t
S
c

w
r
t
w
t
d
n
n
b
r
r

tive prob false with varying number of different hash functions
nd number of elements in the set. As shown in Fig. 10 (a), a
arger W results in a lower probability of false positive. When

is equal to or larger than 3,200 bits, the number of differ-
nt hash functions does not impact the probability of false
ositive significantly. In Fig. 10 (b), as the number of elements

n the set increases, the probability of false positive also in-
reases. However, a lower probability of false positive is ob-
ained with a larger number of different hash functions. Based

n the above analysis, we empirically set W = 3,200, N = 250,
nd K = 8, where the probability of false positive is approxi-
ate 0.002176. Apparently, the probability of false positive is

ery small and could be ignored.
In this paper, after generating the Bloom filter array, DODAG

oot encloses the Bloom filter array in a BF-DIO packet, and

istributes BF-DIO packet to other nodes through DODAG

ownward routes. Please note that BF-DIO packet is inherited

rom DIO packet. According to Winter et al. (2012) , the RPL
ontrol message (i.e., DIO packet) is designed in accordance
ith ICMPv6 message Conta et al. (1998) , which consists of an

CMPv6 header followed by a message body. The size of ICMPv6
eader is 4 bytes. The message body is comprised of a message
ase and possibly a number of varying-size options. As speci-
ed in Winter et al. (2012) , the size of DIO message base is 20
ytes. Thus, the average size of BF-DIO packet is 424 bytes.

. Performance evaluation

.1. Simulation testbed and benchmarks

e develop an event-driven simulation framework using OM-
eT++ Varga (2014) and conduct extensive simulation exper-

ments to evaluate the performance of our mechanisms (lite-
AD and proDIO). We deploy DODAG A as shown in Fig. 1 in a
00 × 100 m

2 network area. DODAG A constitutes one DODAG

oot, eight normal nodes, and one adversary. Please note that
iteSAD and proDIO are distributed mechanisms, thus, the size
r the structure of network does not affect the effectiveness of
ur mechanisms. The lognormal shadowing model is adopted

o estimate the average path loss, where the signal delivery
hreshold is set to -81, resulting in communication range to
e 12.59 m. CC2420 defines the real radios of the same name
y Texas Instruments, thus, it is selected to simulate the radio
odel. The adversary generates attack DIS packets with a rate
hich is exponentially distributed with a mean value between

 and 30. We also simulate new nodes joining scenario, where
ew nodes are added into the network with a rate which is
xponentially distributed with a mean value 500. DODAG root
enerates data packet every 15 seconds and randomly sends
t to one of the leaf nodes (i.e., n 6 , n 7 , and n 8). The length of
imulation is 10,000 seconds.

We measure the performance of detection rate, detec-
ion latency, miss detection rate, DIO Trickle timer, number
f broadcasted DIO packets, energy consumption, change of

prob dio by varying various system parameters. For performance
omparison, we select GINI Groves and Pu (2019) and Monitor
haleb et al. (2019) as benchmarks and implement them in the
imulation framework. We also consider ‘‘Without Counter-
easure’’ as another benchmark to show performance (lower
r upper) bound. The basic idea of GINI and Monitor are ex-
lained in the following:

• GINI : Each node records the node identities in the received

DIS packets within a time period and calculates the dis-
perisity of node identities based on Gini index theory.
If the calculated Gini index value is larger than a threshold

value, sybil attack can be detected.
• Monitor : Each node counts the number of received DIS

packets from neighbor nodes within a time period.
If the number of received DIS packets is larger than a pre-
defined threshold value, the node detects sybil attack in

the network.

.2. Simulation results and analysis

irst, we measure the detection rate of our mechanism lite-
AD + proDIO as well as GINI and Monitor by varying the ex-
onential interval of attack DIS packet in Fig. 11 . Please note
hat a larger exponential interval results in a lower attack DIS
acket rate, while a higher attack DIS packet rate is generated

ith a smaller exponential interval. liteSAD + proDIO shows the
etection rate as high as 95%, and most importantly, the at-
ack DIS packet rate does not affect the detection rate. In lite-
AD + proDIO , each node checks the node identity in the re-
eived attack DIS packet with the local Bloom filter array,
hich can accurately detect fictitious node identity and PUF

esponse. However, randomly generated fictitious node iden-
ity and PUF response in the attack DIS packets might collide
ith real and legitimate node identity and PUF response in

he network, thus, a very few attack DIS packets might not be
etected. In addition, random packet loss due to bad chan-
el quality might affect detection rate as well. As the expo-
ential interval of attack DIS packet increases (i.e., less num-
er of attack DIS packets are being generated), the detection

ate of GINI and Monitor decrease. This is because each node
eceives less number of attack DIS packets within a window

c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1 11

Fig. 12 – The performance of detection latency against
attack DIS message rate (exponential interval).

Fig. 13 – The performance of miss detection rate against
attack DIS message rate (exponential interval).

period. When comparing with the threshold value, the attack
detection requirement does not meet. Thus, a decreasing de-
tection rate is observed by GINI and Monitor . Additionally, the
threshold value has a significant impact on the detection rate
of GINI , where a larger threshold value results in a lower de-
tection rate. However, the detection rate of Monitor is not very
sensitive to the threshold value when the exponential interval
of attack DIS packet increases.

Second, we measure the detection latency with changing
attack DIS packet rate in Fig. 12 . Here, the detection latency is
recorded as the amount of time taken to detect sybil attack
100 times. Please note that the more times sybil attack are de-
tected, the longer the detection latency is. As the exponential
interval of attack DIS packet increases, the detection latency
of our mechanism liteSAD + proDIO increases as well. Since less
number of attack DIS packets are generated and broadcasted
by adversary, it is straightforward that more time is required to
detect sybil attack 100 times. When the exponential interval is
between 1 and 10, GINI with T H

gini
dec = 0.8 is able to detect sybil

attack 100 times with a larger detection latency, compared to
liteSAD + proDIO . However, as the number of attack DIS pack-
ets decreases (i.e., the exponential interval increases from 10
to 30), the detection latency of GINI with T H

gini
dec = 0.8 reaches

0, which indicates that the goal of detecting sybil attack 100
times was not achieved. In addition, Monitor with T H

mon
dec = 0.3

or 0.5, and GINI with T H

gini
dec = 0.9 cannot detect enough sybil

attack before the simulation ends.
Third, the miss detection rate of all three mechanisms are

obtained with different attack DIS packet rates in Fig. 13 . The
miss detection rate of GINI with T H

gini
dec = 0.9 is not available,

which is showing as 0. As the interval of attack DIS packet
increases, the miss detection rate of GINI with T H

gini
dec = 0.8 in-

creases. Since less number of attack DIS packets are gener-
ated, more sybil attack cannot be detected, resulting in an in-
creasing miss detection rate. For Monitor with different T H

mon
dec ,

the miss detection rate increases as the exponential interval
of attack DIS packet increases. This is because less number
of attack DIS packets makes DIS packet rate less than T H

mon
dec .

As a result, sybil attack is miss-detected. Our mechanism lite-
SAD + proDIO outperforms GINI and Monitor , achieving the miss
detection rate as low as 5%.

Fourth, we obtain the change of DIO Trickle timer against
simulation time in Fig. 14 . Overall, a longer DIO Trickle timer is
obtained by our mechanism liteSAD + proDIO . When attack DIS
packet is detected, there is a probability that the legitimate
node does not reset DIO Trickle timer to I min . Thus, a longer
DIO Trickle timer can be obtained. However, for GINI and Moni-
tor , the length of DIO Trickle timer is fluctuating between 0 and
40 seconds. Since GINI and Monitor do not have any response
mechanism against attack DIS packets, their DIO Trickle timer
is always reset to I min when attack DIS packet is received. In
addition, we also measure the change of DIO Trickle timer in
the scenario of ‘‘Without Countermeasure’’.

Fifth, we measure the number of broadcasted DIO pack-
ets and energy consumption as the simulation time elapses
in Fig. 15 and Fig. 16 , respectively. As shown in Fig. 15 , less
number of DIO packets are broadcasted by our mechanism
liteSAD + proDIO . In liteSAD + proDIO , each legitimate node prob-
abilistically decides to reset its DIO Trickle timer and broad-
cast DIO packet when sybil attack is detected. Thus, less num-
ber of DIO packets are broadcasted. It is no doubt that the
largest number of DIO packets will be broadcasted when there
is no countermeasure (i.e., ‘‘Without Countermeasure’’ sce-
nario) in the network. Compared to Monitor , less number of
DIO packets are broadcasted by GINI because GINI reduces
DIO replying rate after successfully detecting sybil attack. As
shown in Fig. 16 , the lowest energy consumption is obtained
by our mechanism liteSAD + proDIO , while the highest energy
consumption belongs to ‘‘Without Countermeasure’’ scenario.
Please note that the energy consumption is closely related to
the number of received attack DIS packets and the number of
broadcasted DIO packets. If a larger number of DIO packets
are broadcasted by a mechanism, a higher energy consump-
tion should be obtained by the mechanism.

12 c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1

Fig. 14 – The change of DIO Trickle timer against simulation time.

Fig. 15 – The change of broadcasted DIO packets against simulation time.

Fig. 16 – The change of energy consumption against simulation time.

a
F
S

e

n
w
p
p
D
G
S
a
s
r
e

n
s

n
u
t
a
D
D
i
a
e
c
s
b
s

Sixth, we obtain the number of broadcasted DIO packets
nd the energy consumption for each node in Fig. 17 and

ig. 18 , respectively. As shown in Fig. 17 , our mechanism lite-
AD + proDIO causes node n 1 , n 2 , and n 4 to broadcast the small-
st number of DIO packets. This is because when n 1 , n 2 , and
 4 detect fictitious attack DIS packet, they randomly decide
hether to reply DIO packet. Thus, a large number of DIO

acket broadcastings can be avoided by liteSAD + proDIO . Com-
ared to ‘‘Without Countermeasure’’ scenario, less number of
IO packets are broadcasted by GINI and Monitor . Even though

INI and Monitor cannot detect sybil attack as efficient as lite-
AD + proDIO , they still can contribute to defend against sybil
ttack. As shown in Fig. 18 , our mechanism liteSAD + proDIO can

ignificantly save nodes’ (i.e., n 1 , n 2 , and n 4) limited energy
esources by reducing the number of broadcasted DIO pack-
ts. Since the energy consumption is calculated based on the
umber of broadcasted DIO packets, the lowest energy con-
umption is obtained by liteSAD + proDIO .

Seventh, we observe the change of prob dio of node n 1 , n 2 , and
 4 against simulation time in Fig. 19 . As the adversary contin-
ously generates and broadcasts attack DIS packets with fic-
itious identities and PUF responses, liteSAD can first detect
ttack DIS packets and increase the detection rate. Then, pro-
IO is able to quickly adjust the probability (prob dio) of resetting
IO Trickle timer and broadcasting DIO packets accordingly. It

s clearly shown that prob dio can be maintained between 0.28
nd 0.3. Whit this low probability, a large number of DIO pack-
ts can be avoided and the impact of sybil attack can be signifi-
antly reduced. Please note that prob dio is closely related to the
etting of parameters including α, β, γ , and γ . Thus, prob dio can

e adjusted for subjective preference with different parameter
etting.

c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1 13

Fig. 17 – The number of broadcasted DIO packets for each

node.

Fig. 18 – The performance of energy consumption for each

node.

Fig. 19 – The change of prob dio for node n 1 , n 2 , and n 4 .

Eighth, we measure the change of DIO Trickle timer by
varying the setting of parameters such as α, β, γ , and δ in
Fig. 20 . As shown in Fig. 20 (a), α with a larger value will re-
sult in a longer DIO Trickle timer in general. In Fig. 20 (b), as we
increase the value of β, the length of DIO Trickle timer slightly
decreases. The impact of γ on the length of DIO Trickle timer
is observed in Fig. 20 (c). Overall, a larger γ results in a longer
DIO Trickle timer. Finally, the length of DIO Trickle timer is
recorded with different value of δ. We can clearly see that a
smaller δ will produce a larger DIO Trickle timer.

Ninth, the number of broadcasted DIO packets is measured
with varying α, β, γ , and δ in Fig. 21 . As shown in Fig. 21 (a), the
value of α seems not have significant impact on the number
of broadcasted DIO packets. In Fig. 21 (b), a smaller β clearly re-
sults in less number of broadcasted DIO packets. According to
Eq. (3) , a smaller β creates a lower bound of prob new

dio , which re-
sults in a lower prob dio . Thus, a smaller probability prob dio can
be obtained with a smaller β, and less number of DIO packets
will be broadcasted. In Fig. 21 (c), a larger γ causes less num-
ber of DIO packets to be broadcasted. This is because a smaller
prob dio can be obtained with a larger γ . When we increase the
value of δ, more DIO packets will be broadcasted. The reason is
that a larger δ generates a smaller power to exponent e . Thus,
a larger prob dio can be achieved, which causes more DIO pack-
ets to be broadcasted. In Fig. 22 , we measure the performance
of energy consumption against α, β, γ , and δ. Since the en-
ergy consumption is strongly associated with the number of
broadcasted DIO packets, the energy consumption has a simi-
lar trend as the number of broadcasted DIO packets as shown
in Fig. 21 . Finally, we measure the performance of detection
rate, detection latency, and miss detection rate against α, β,
and γ in Fig. 23 . Overall, the parameter setting does not have
close relationship with the performance of detection rate, de-
tection latency, and miss detection rate.

8. Discussion

8.1. The design of Trickle algorithm and its potential
improvement

In a lossy environment, how to exchange information in a ro-
bust, energy-efficient and scalable manner becomes a chal-
lenging task. The Trickle algorithm Levis et al. (2011) is re-
garded as an adaptive communication mechanism to main-
tain information consistency over a shared wireless medium.
According to the level of local information consistency, a node
can fine-tune its message transmission rate dynamically. Ac-
cording to the RPL specification Winter et al. (2012) , one of de-
sign requirements is that the RPL routing protocol shall pro-
vide a mechanism to disseminate information over the dy-
namically formed network topology. This information dissem-
ination should enable minimal configuration in the nodes,

14 c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1

Fig. 20 – The performance of DIO Trickle timer against α, β, γ, and δ.

Fig. 21 – The number of broadcasted DIO packets against α, β, γ, and δ.

Fig. 22 – The performance of energy consumption against α, β, γ, and δ.

a
t
a
s
n

A
t
n
T
c

i
m
t
C
i
d
o
b

llowing nodes to operate mostly autonomously. To meet
his design requirement, the RPL routing protocol deservedly
dopts the Trickle algorithm to optimize the information dis-
emination. However, the Trickle algorithm specification does
ot have any specific security considerations Levis et al. (2011) .
s a result, the security concern might arise when it is used in

he RPL routing protocol. For example, an adversary can force
odes to send many more packets than needed by forcing
rickle timer resets. In the IoT networks, this traffic increase

an harm network lifetime. c
Since the proposal of the Trickle algorithm specification

n 2011, a number of researchers have attempted to opti-
ize its performance and proposed other improvements to

he Trickle algorithm. For example, the authors in Goyal and

hand (2017) propose an approach to resolve the load balanc-
ng issue in the Trickle algorithm. The basic idea is that the re-
undancy parameter k is set to zero at the time of suppression

r transmission of the DIO packets, which can solve the load

alancing problem as well as reduce the energy and power
onsumption. In Djamaa et al. (2017) , the authors propose to

c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1 15

Fig. 23 – The performance of detection rate, detection latency, and miss detection rate against α, β, and γ.

integrate contextual information with the Trickle algorithm to
minimize the latency of information dissemination in the IoT
networks. To be specific, the link quality information and lo-
cal network information are being utilized by the Trickle algo-
rithm so that the information can be propagated faster. The
authors in Lamaazi et al. (2019) present a flexible Trickle al-
gorithm. Based on the time parameter and the minimum in-
terval values, the flexible Trickle algorithm can reduce the in-
formation dissemination delay. Unfortunately, none of above-
mentioned approaches can successfully address the vulner-
ability of adversarial Trickle timer resets in the Trickle algo-
rithm.

To prevent adversarial timer resets in the original Trickle
algorithm, we would like to make the following sugges-
tion. The Trickle algorithm can be configured to carefully se-
lect what can cause a timer reset and protect these events
and messages with proper security mechanism. For exam-
ple, if a node can reset nearby Trickle timers by sending
a certain packet, this packet should be authenticated (see
Sub section 8 .2.) such that an adversary cannot forge one.

8.2. PUF-based authentication protocols for IoT networks

In this paper, we primarily focus on the RPL-specific sybil at-
tack that cannot be detected by digital signatures and crypto-
graphic primitives. Thus, in this subsection, we plan to discuss
the PUF-based authentication protocols that can be used as an
additional defensive line to secure Trickle algorithm as well as
IoT networks.

Recently, several PUF-based security protocols and tech-
niques have been proposed for IoT networks. In Li et al. (2020) ,
the authors propose an end-to-end mutual authentication
and key exchange protocol for IoT networks by combining
PUF with certificateless public key cryptography on elliptic

16 c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1

Algorithm 1: Trickle algorithm in RPL.

Input: I min , I max , k
Output: I, t, c

1 Function Init(I min) :
/* sets timer I to the first interval */

2 I ← I min ;
3 return I;

4 Function NewIntvl() :
/* doubles the interval length */

5 I ← I × 2;
/* sets a counter variable c to 0 */

6 c ← 0;
/* sets the interval length to I max */

7 if I max ≤ I then

8 I ← I max ;
9 end

/* sets t to a random point in interval */

10 t ← rand [I 2 , I];
11 return t;

12 Function RecConsTrans() :
/* increases counter variable c */

13 c ← c + 1;
14 return c ;

15 Function RecConsTrans() :
16 if I min < I then

/* resets timer I */

17 I ← I min ;
18 end
19 return I;

20 Function TimerExp() :
21 if c < k then

/* c less than redundancy constant k */

22 Transmit scheduled DIO;
23 else
24 Suppress scheduled DIO;
25 end

c
s
c
t
t

t
m
c
b
a
t
o
a
m
L
i
t

t
p
d
P
o
a

Algorithm 2: Sybil attack detection mechanism.

Input: pkt[n id , r id , l oad, t ype]
/* A packet containing a node ID (n id), PUF response (r id),

payload (load), and packet type (type). Here, type can be
either DIO or DIS ; load can be Bloom filter array B cur

issued at the time cur . */

/* receive pkt[n R , dio] from DODAG root n R */

1 Function UpdateBloom(pkt [n R , nul l , B cur , dio]) :
/* extract B cur from pkt[dio] */

2 B tmp ← pkt[B cur] .extract();
/* update local Bloom filter array B local */

3 B local .update(B tmp);
/* forward pkt[dio] to child node(s) n fwd */

/* Set child is child node set */

4 for fwd ← i ∈ Set child do
5 forward(pkt[dio] , n fwd);
6 end

/* receive pkt[n a , r a , nul l , dis] from node n a */

7 Function DetAttack(pkt[n a , r a , nul l , dis]) :
/* retrieve node identifier */

8 id tmp ← pkt[n a] .extract();
/* retrieve PUF response */

9 r tmp ← pkt[r a] .extract();
/* compute K array positions */

10 for i ← j ∈ | K| do
11 y i ← hash i (id tmp | r tmp);

/* Y is the set of K array positions */

12 Y ← Y ∪ y i ;
13 end

/* check the presence of Y in B local */

14 if B local .match(Y) then

/* receive legitimate DIS packet */

15 Continue with original Trickle algorithm;
16 else

/* receive attack DIS packet */

/* detect sybil attack and increase attack detection

counter cnt atk */

17 cnt atk ← cnt atk + 1;
18 Continue with attack impact relief mechanism;
19 end

/* DODAG root n R issues DIO packet with new Bloom filter
array when � ends */

20 Function SendBloom() :
21 for id tmp ← i ∈ [S exg − S die ∪ S new] do
22 for i ← j ∈ | K| do
23 y i ← hash i (id tmp | r tmp);
24 Y ← Y ∪ y i ;
25 end
26 B cur ← B cur ∪ Y;
27 end
28 for fwd ← i ∈ Set child do
29 forward(pkt[n R , B cur , dio] , n fwd);
30 end

8

I
w
N

e
n

urve. The proposed security protocol only needs ‘‘three hand-
hakes’’ without the real-time participation of the server. Ac-
ording to the experimental study, the proposed security pro-
ocol can achieve better performance in terms of security fea-
ures and communication cost. In Ebrahimabadi et al. (2021) ,
he authors propose a security protocol to defend against

odeling attacks by limiting the adversary’s ability to inter-
ept the whole challenge bits exchanged with IoT nodes. The
asic idea is to split the challenge bits over multiple messages
nd engage one or multiple helper nodes in the dissemina-
ion process. The experimental results show the effectiveness
f the proposed methods in boosting the robustness of IoT

uthentication. The authors in Liang et al. (2021) propose a
utual authentication scheme for RFID systems, where Deep

earning (DL) technique is incorporated onto the Arbiter Phys-
cal Unclonable Function (APUF) for the secured access au-
hentication of the IC circuits in IoT networks. In addition,
hrough extensive experiments, the authors prove that the
roposed scheme has high robustness and security against
ifferent conventional attack methods. In summary, the prior
UF-based authentication protocols can be integrated with

ur mechanisms to fully protect IoT networks from security
ttacks.
.3. The immunity against traditional sybil attacks

n this subsection, we discuss the liteSAD and see
hether it can successfully detect traditional sybil attacks
ewsome et al. (2004) in the IoT networks.

The basic idea of liteSAD is that the network gateway gen-
rates a Bloom filter array through hashing each legitimate
ode’s identifier and PUF response, and distributes it through

c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1 17

Algorithm 3: Attack impact relief mechanism.

Input: cnt atk , cnt dis

Output: prob dio

/* update broadcasting probability of DIO */

1 Function UpdateProbDIO(cnt atk , cnt dis) :
/* calculate new attack detection rate */

2 rt det =
cnt atk
cnt dis

;

/* calculate recent broadcasting prob. */

3 prob new
dio = β + γ · e 1 −rt det ·δ ;

/* update broadcasting probability */

4 prob dio = α · prob prev
dio + (1 - α) · prob new

dio ;
5 return prob dio ;

/* probabilistically broadcast DIO packet */

6 Function BcastDIO(pkt[n id , in fo, null, dio]) :
/* generate a random number */

7 temp ← rand[0, 1];
/* decide whether to broadcast DIO */

8 if prob dio ≤ temp then

/* broadcast DIO packet */

9 forward(pkt[n id , in fo, null, dio] , broadcast);
10 else
11 discard DIS packet;
12 continue with original Trickle algorithm;
13 end

a control packet. Each legitimate node retrieves the Bloom fil-
ter array from the received control packet and updates its lo-
cal copy. When an adversary broadcasts an attack packet with
fake node identifier and PUF response, the legitimate node
accesses the local Bloom filter array to check whether the
claimed node identifier and PUF response are a member of
the Bloom filter array. If there is a match, the legitimate node
continues to operate as the routing algorithm specified. Oth-
erwise, the legitimate node detects sybil attack and proceeds
with the attack impact relief mechanism (proDIO). In sum-
mary, our mechanism liteSAD is designed to use the node iden-
tifier information piggybacked in the packets to detect any
potential sybil attacks in the IoT networks. As a result, if the
adversary broadcasts attack packets with the fabricated iden-
tities, the legitimate nodes can successfully detect the sybil
attacks. Thus, our mechanism liteSAD can successfully detect
traditional sybil attacks in the IoT networks.

9. Conclusion

In this paper, we investigated sybil attack and proposed two
mechanisms: liteSAD and proDIO . The basic idea of liteSAD is
that DODAG root generates a Bloom filter array through hash-
ing each normal node’s identifier and response of physical
unclonable function (PUF), and distributes it through a new
packet named BF-DAO. When a legitimate node receives a DIS
packet, it checks whether the claimed node identifier and PUF
response are a member of the local Bloom filter array. If there
is no match, the legitimate node successfully detects sybil at-
tack. In proDIO , each node probabilistically decides whether
to reset DIO Trickle timer and reply DIO packet after detect-
ing sybil attack, which can significantly reduce the number of
broadcasted DIO packets. We also provided a theoretical anal-
ysis to investigate the setting of Bloom filter parameters to
minimize the false positive and time complexity while meet-
ing the requirement of memory constraints in IoT devices. To
evaluate the performance of our mechanisms liteSAD + proDIO ,
we developed an event-driven simulation framework, com-
pared our mechanisms with existing approaches, and con-
ducted extensive simulation experiments. The simulation re-
sults demonstrate that liteSAD + proDIO can extensively im-
prove detection rate, detection latency, DIO Trickle timer, as
well as reduce miss detection rate, the number of broadcasted
DIO packets, and energy consumption. In summary, the pa-
per makes the following contributions to the IoT community.
First, we investigate the RPL routing protocol, which is a well-
known and widely used IoT routing protocol. The compre-
hensive analysis of RPL routing protocol, Trickle algorithm,
and the impact of sybil attack will provide deeper knowledge
on RPL-based IoT and its potential security issues. Second,
we propose a lightweight sybil attack detection mechanism
based on Bloom filter and PUF. The proposed research will
have important implications for other security mechanisms
in the IoT networks, and will provide design considerations to
the broader IoT community seeking new research directions.
Speaking of future work, we plan to implement and deploy a
real-world testbed consisting of Tmote nodes in an office envi-
ronment, where the complete capacity of liteSAD + proDIO can
be explored.

CRediT authorship contribution statement

Cong Pu: Conceptualization, Methodology, Validation, Formal
analysis, Investigation, Data curation, Writing – original draft.
Kim-Kwang Raymond Choo: Conceptualization, Writing – re-
view & editing.

Declaration of Competing Interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

CRediT authorship contribution statement

Cong Pu: Conceptualization, Methodology, Validation, For-
mal analysis, Investigation, Data curation, Writing – original
draft, Writing – review & editing. Kim-Kwang Raymond Choo:
Conceptualization, Writing – review & editing.

R E F E R E N C E S

Airehrour D , Gutierrez J , Ray S . SecTrust-RPL: a secure trust-aware
RPL routing protocol for internet of things. Future Generation

Computer Systems 2019;93:860–76 .
Al-Turjman F . Cognitive routing protocol for disaster-inspired

internet of things. Future Generation Computer Systems
2019;92:1103–15 .

Althubaity A , Gong T , K R , Nixon M , Ammar R , Han S .
Specification-based Distributed Detection of Rank-related
Attacks in RPL-based Resource-Constrained Real-Time
Wireless Networks. In: IEEE Proc. ICPS; 2020. p. 168–75 .

http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0003

18 c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1

B

B

B

C

C

C

D

D

D

E

G

G

G

I

J

J

K

L

L

L

L

M

M

M

M

M

M

N

P

P

P

P

R

S

S

T

V
V

V

W

Y

i
w

H
t

E

ehera T , Mohapatra S , Samal U , Khan M , Daneshmand M ,
Gandomi A . I-SEP: An improved routing protocol for
heterogeneous WSN for IoT-Based environmental monitoring.
IEEE Internet Things J. 2019;7(1):710–17 .

loom B . Space/time trade-offs in hash coding with allowable
errors. Commun ACM 1970;13(7):422–6 .

ormann C , Ersue M , Keranen A . Terminology for
constrained-Node networks. Internet Engineering Task Force,
RFC7228 2014:1–17 .

hristensen K , Roginsky A , Jimeno M . A new analysis of the false
positive rate of a bloom filter. Inf Process Lett
2010;110(21):944–9 .

onta A , et al . Internet control message protocol (ICMPv6) for the
internet protocol version 6 (IPv6) specification. rfc
1998;2463:1–24 .

outinho R , Boukerche A , Loureiro A . A novel opportunistic
power controlled routing protocol for internet of underwater
things. Comput Commun 2020;150:72–82 .

jamaa B , Senouci M , Bessas H , Dahmane B , Mellouk A . Efficient
and stateless P2P routing mechanisms for the internet of
things. IEEE Internet Things J. 2021 . 1–1

jamaa B , Senouci M , Mellouk A . Trickle++: A Context-Aware
Trickle Algorithm. In: IEEE Proc. GLOBECOM; 2017. p. 1–6 .

ohler M , Watteyne T , Winter T , Barthel D . Routing requirements
for urban low-power and lossy networks. Internet Engineering
Task Force, RFC5548 2009:1–21 .

brahimabadi M , Younis M , Karimi N . A PUF-Based

modeling-Attack resilient authentication protocol for IoT

devices. IEEE Internet Things J. 2021 . 1–1
haleb B , Al-Dubai A , Ekonomou E , Qasem M , Romdhani I ,

Mackenzie L . Addressing the DAO insider attack in RPL’s
internet of things networks. IEEE Commun. Lett.
2019;23(1):68–71 .

oyal S , Chand T . Improved trickle algorithm for routing protocol
for low power and lossy networks. IEEE Sens J
2017;18(5):2178–83 .

roves B , Pu C . A Gini Index-Based Countermeasure Against Sybil
Attack in the Internet of Things. In: Proc. IEEE MILCOM; 2019.
p. 1–6 .

ntelligence G.. The Contribution of IoT to Economic Growth;
2019..

an M , Nanda P , He X , Liu R . A Sybil attack detection scheme for a
forest wildfire monitoring application. Future Generation

Computer Systems 2018;80:613–26 .
azebi S , Ghaffari A . RISA: routing scheme for internet of things

using shufed frog leaping optimization algorithm. J Ambient
Intell Humaniz Comput 2020:1–11 .

aliyar P , Jaballah W , Conti M , Lal C . LiDL: localization with early
detection of sybil and wormhole attacks in IoT networks.
Computers & Security 2020;94:101849 .

amaazi H , Benamar N , Kahili NE , Taleb T . FL-Trickle: new

enhancement of trickle algorithm for low power and lossy
networks. In: IEEE Proc. WCNC; 2019. p. 1–6 .

evis P , et al . The Trickle algorithm. Internet Engineering Task
Force, RFC6206 2011:1–13 .

i S , Zhang T , Yu B , He K . A provably secure and practical
PUF-Based end-to-end mutual authentication and key
exchange protocol for IoT. IEEE Sens J 2020;21(4):5487–501 .

iang W , Xie S , Zhang D , Li X , Li K . A mutual security
authentication method for RFID-PUF circuit based on deep

learning. ACM Trans. Internet Technol. 2021;22(2):1–20 .
ishra A , Tripathy A , Puthal D , Yang L . Analytical model for sybil

attack phases in internet of things. IEEE Internet Things J.
2019;6(1):379–87 .

nasri S , Nasri N , Val T . The Deployment in the Wireless Sensor
Networks: Methodologies, Recent Works and Applications.
Proc. PEMWN, 2014 .
i
c
orrow M.. Securing the Internet of Things: A Proposed

Framework; 2015. https://tools.cisco.com/security/center .
ullin J . A second look at bloom filters. Commun ACM

1983;26(8):570–1 .
urali S , Jamalipour A . A lightweight intrusion detection for sybil

attack under mobile RPL in the internet of things. IEEE
Internet Things J. 2019;7(1):379–88 .

’Raihi D , Machani S , Pei M , Rydell J . TOTP: time-based one-time
password algorithm. Internet Request for Comments 2011 .

ewsome J , Shi E , Song D , Perrig A . The Sybil Attack in Sensor
Networks: Analysis & Defenses. In: Proc. IEEE IPSN; 2004.
p. 259–68 .

u C . Sybil attack in RPL-Based internet of things: analysis and

defenses. IEEE Internet Things J. 2020;7(6):4937–49 .
u C , Gade T , Lim S , Min M , Wang W . Lightweight Forwarding

Protocols in Energy Harvesting Wireless Sensor Networks. In:
Proc. IEEE MILCOM; 2014. p. 1053–9 .

u C , Li Y . Lightweight Authentication Protocol for Unmanned

Aerial Vehicles Using Physical Unclonable Function and

Chaotic System. In: IEEE Proc. LANMAN; 2020. p. 1–6 .
u C , Lim S , Jung B , Chae J . EYES: Mitigating forwarding

misbehavior in energy harvesting motivated networks.
Comput Commun 2018;124:17–30 .

aoof A , Matrawy A , Lung C . Routing attacks and mitigation

methods for RPL-based internet of things. IEEE
Communications Surveys & Tutorials 2018;21(2):1582–606 .

hamsoshoara A , Korenda A , Afghah F , Zeadally S . A survey on

physical unclonable function (PUF)-based security solutions
for internet of things. Comput. Networks 2020;183:107593 .

tallings W . Cryptography and network security - Principles and

practices, 7th edition. Pearson; 2016 .
ange K , De Donno M , Fafoutis X , Dragoni N . A systematic survey

of industrial internet of things security: requirements and fog
computing opportunities. IEEE Communications Surveys &

Tutorials 2020;22(4):2489–520 .
arga A.. OMNeT++; 2014. http://www.omnetpp.org/ .
asudeva A , Sood M . Survey on sybil attack defense mechanisms

in wireless ad hoc networks. Journal of Network and

Computer Applications 2018;120:78–118 .
erma A , Ranga V . Security of RPL based 6LoWPAN networks in

the internet of things: A Review. IEEE Sens J
2020;20(11):5666–90 .

inter T , et al . RPL: IPv6 Routing protocol for low-power and

lossy networks. rfc 2012;6550:1–157 .
ao Y , Xiao B , Yang G , Hu Y , Wang L , Zhou X . Power control

identification: a novel sybil attack detection scheme in

VANETs using RSSI. IEEE J. Sel. Areas Commun.
2019;37(11):2588–602 .

Cong Pu (S’15-M’16) received the B.S. de-
gree in Computer Science and Technology
from Zhengzhou University, China, in 2009,
and the M.S. and Ph.D. degrees in Computer
Science from Texas Tech University in 2013
and 2016, respectively. From 2014 to 2016,
he was an Instructor with the Department
of Computer Science, Texas Tech University,
while he was working towards Ph.D. degree.
He is currently an Assistant Professor with

the Department of Computer Sciences and

Electrical Engineering, Marshall University,
Huntington, WV, USA. His primary research

nterests include cryptography, network security, wireless net-
orks, mobile computing, and information-centric networking.
e served as a technical program committee member in many in-

ernational conferences. He was a reviewer for many IEEE, ACM,
lsevier, and Springer journals. He is also serving as Associate Ed-
tor of several journals. He received 2015 Helen Devitt Jones Ex-
ellence in Graduate Teaching Award at Texas Tech University.

http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0026
https://tools.cisco.com/security/center
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0039
http://www.omnetpp.org/
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00365-5/sbref0044

c o m p u t e r s & s e c u r i t y 1 1 3 (2 0 2 2) 1 0 2 5 4 1 19

He was the recipient of 2018 NASA WVSGC Research Initiation
Grant, 2020 NASA EPSCoR Research Seed Grant, 2020 Open Edu-
cation Resources (OER) Grant Award, 2018 John Marshall Summer
Scholar Award. He received 2019 IEEE ICDIS Best Paper Award. He
was the Winner of 2017 Design for Delight (D4D) Innovation Chal-
lenge Competition as a Faculty Coach (Marshall University and In-
tuit Inc.). He was a member of Computer Science Workgroup for
West Virginia Department of Education to increase and strengthen
computer science education in West Virginia. He was nominated
by West Virginia Department of Education to participate in Educa-
tional Testing Services Standard Setting Study in EST.

Kim-Kwang Raymond Choo (SM’15) received
the Ph.D. in Information Security in 2006
from Queensland University of Technology,
Australia. He currently holds the Cloud Tech-
nology Endowed Professorship at The Uni-
versity of Texas at San Antonio (UTSA). In
2016, he was named the Cybersecurity Edu-
cator of the Year - APAC (Cybersecurity Ex-
cellence Awards are produced in cooperation
with the Information Security Community
on LinkedIn), and in 2015 he and his team
won the Digital Forensics Research Chal-
lenge organized by Germany’s University of

Erlangen-Nuremberg. He is the recipient of the 2019 IEEE Technical
Committee on Scalable Computing (TCSC) Award for Excellence in
Scalable Computing (Middle Career Researcher), 2018 UTSA Col-
lege of Business Col. Jean Piccione and Lt. Col. Philip Piccione En-
dowed Research Award for Tenured Faculty, Outstanding Associate
Editor of 2018 for IEEE Access, British Computer Society’s 2019
Wilkes Award Runner-up, 2019 EURASIP Journal on Wireless Com-
munications and Networking (JWCN) Best Paper Award, Korea In-
formation Processing Society’s Journal of Information Processing
Systems (JIPS) Survey Paper Award (Gold) 2019, IEEE Blockchain
2019 Outstanding Paper Award, Inscrypt 2019 Best Student Pa-
per Award, IEEE TrustCom 2018 Best Paper Award, ESORICS 2015
Best Research Paper Award, 2014 Highly Commended Award by the
Australia New Zealand Policing Advisory Agency, Fulbright Schol-
arship in 2009, 2008 Australia Day Achievement Medallion, and
British Computer Society’s Wilkes Award in 2008. His research has
been funded by the National Science Foundation, NASA, CPS En-
ergy, LGS Innovations, Texas National Security Network Excellence
Fund, Australian Government National Drug Law Enforcement Re-
search Fund, Australian Government Cooperative Research Centre
for Data to Decision, auDA Foundation, Government of South Aus-
tralia, BAE Systems stratsec, Australasian Institute of Judicial Ad-
ministration Incorporated, Australian Research Council, etc. He is
also a Fellow of the Australian Computer Society, and Co-Chair of
IEEE Multimedia Communications Technical Committee’s Digital
Rights Management for Multimedia Interest Group.

https://doi.org/10.13039/100015539

	Lightweight Sybil Attack Detection in IoT based on Bloom Filter and Physical Unclonable Function
	1 Introduction
	2 Related work
	3 Background
	3.1 RPL routing protocol
	3.2 Trickle algorithm and DIO transmission
	3.3 Sybil attack and its impact

	4 Preliminary
	4.1 System model
	4.2 Bloom filter
	4.3 Physical unclonable function
	4.4 Overview of our approach

	5 The proposed mechanisms
	5.1 Sybil attack detection mechanism
	5.2 Attack impact relief mechanism

	6 Probability of false positive analysis
	7 Performance evaluation
	7.1 Simulation testbed and benchmarks
	7.2 Simulation results and analysis

	8 Discussion
	8.1 The design of Trickle algorithm and its potential improvement
	8.2 PUF-based authentication protocols for IoT networks
	8.3 The immunity against traditional sybil attacks

	9 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	CRediT authorship contribution statement

	Reference

