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Abstract—In this paper, we address a practical and large-
dimensional problem of joint design of modulation and coding
scheme (MCS) and transmit power allocation for an uplink
massive multi-antenna system serving multiple users. We propose
to jointly optimize the MCS and the transmit power for all
the active users in a centralized approach. For this purpose,
we formulate a joint MCS and power allocation problem as a
multi-dimensional discrete optimization problem and develop a
successive coordinate search (SCS) algorithm to obtain optimal
solution while yielding low computational complexity. Compared
to the brute-force exhaustive search procedure that incurs pro-
hibitively high computational complexity, our proposed approach
is shown to solve the problem with much lower computational
complexity. Simulation results reveal that our developed SCS
algorithm performs very close to the optimal solution for different
number of users and antenna configurations.

Keywords—Discrete optimization; modulation and coding
scheme (MCS); multi-user multiple input multiple output (MU-
MIMO); successive coordinate search (SCS) algorithm.

I. INTRODUCTION

Multi-antenna transmission techniques, being one of the
key enablers for the emerging fifth generation (5G) new
radio (NR) system, contributed significantly to increase the
spectral efficiency and transmission reliability over single-
antenna counterparts. When the deployment is constrained by a
smaller transmission bandwidth in sub-6GHz frequency bands,
and to cover large cells at higher mobility, massive multiple-
input and multiple-output (mMIMO) configurations are found
to be very attractive as they enable more users spatially
multiplexed to improve the network spectral efficiency and
overall energy efficiency at the same time [1]–[3]. It is worth
pointing out that an efficient allocation of wireless resources
for mMIMO system brings additional challenges over con-
ventional MIMO systems and several contributions have been
made in the literature to address them while considering
performance-complexity trade-off [4], [5]. A low-complexity
power allocation algorithm is designed in [6] for an uplink
mMIMO system to achieve a target error rate under imperfect
channel state information. Two resource allocation schemes

are proposed in [7] based on deep learning for a cell free
uplink mMIMO system while considering pilot contamination
effects. In [8], optimal and multiple sub-optimal dynamic user
clustering, antenna selection, and power allocation algorithms
are proposed for power-domain non-orthogonal multiple ac-
cess scheme that demonstrates improved performances over
the conventional orthogonal multiple access transmission. In
[9], the authors study joint pilot design and power control in
cellular massive MIMO systems while proposing a novel pilot
design and combining the pilot assignment and uplink power
allocation into a max-min fairness based unified optimization
framework in terms of spectral efficiency. Moreover, [10]
considers a single cell uplink mMIMO with non-orthogonal
multiple access (NOMA) system and proposes a two step
algorithm to perform antenna selection and power allocation
sequentially.

In fourth generation (4G) long-term evolution (LTE) and 5G
NR cellular communication systems, uplink transmit power
for physical uplink channels (physical uplink shared channel
(PUSCH), physical uplink control channel (PUCCH), etc.) can
possess discrete values depending on the number of allocated
resource blocks for data transmission and wireless channel
condition (e.g., path loss, etc.) while considering closed-loop
system [11], [12]. Furthermore, the modulation and coding
scheme (MCS), which selects the baseband modulation class
(phase shift keying (PSK), quadrature amplitude modulation
(QAM), etc.) and channel coding scheme (polar coding, turbo
coding, etc.) while assigning its coding rate, possesses dis-
crete values. Often times, the transmit power and MCS are
calculated jointly by maximizing utility (e.g., data throughput,
etc.) or minimizing cost (e.g., energy consumption, etc.). Most
of the works in the literature consider this joint optimization
problem as a continuous or mixed-integer program. However,
practical resource (joint power and MCS) allocation algorithms
require solving discrete optimization problems that often entail
prohibitively high computational complexity for large number
of users and antennas.

169978-1-6654-6948-7/22/$31.00 ©2022 IEEE TSP 2022

20
22

 4
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 T
el

ec
om

m
un

ic
at

io
ns

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(T

SP
) |

 9
78

-1
-6

65
4-

69
48

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
TS

P5
56

81
.2

02
2.

98
51

39
7

Authorized licensed use limited to: Oklahoma State University. Downloaded on October 25,2022 at 18:19:01 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: System model with multi-antenna base station serving
multiple users.

In this paper, we address a resource allocation problem for
a single-cell uplink multi-user (MU)-MIMO system, where
the access point (AP) operates with a large number of an-
tenna elements. We optimize the transmit power and MCS
allocations for the users during uplink transmission by max-
imizing the network throughput. We incorporate a practical
set of constraints to jointly calculate optimal transmit power
and MCS, resulting in a discrete optimization problem. The
optimal solution approach using brute-force exhaustive search
in general yields prohibitively high computational complexity
that hinders real-time data transmission. Our objective is to de-
velop a resource allocation scheme that yields close-to-optimal
network throughput while assuring lower computational com-
plexity than the exhaustive search algorithm. Following these
observations, we leverage the coordinate search approach in
solving global optimization problems [13] and thereby develop
a computationally efficient successive coordinate search (SCS)
algorithm to solve our considered discrete optimization prob-
lem.

The rest of the paper is organized as follows. System
Model is described in Section II. The proposed joint MCS
and power allocation scheme is discussed in Section III, and
the simulation results are shown in Section IV. At the end,
Section V concludes the paper.

II. SYSTEM MODEL

Let us consider a single-cell uplink communication system
as shown in Fig. 1, where K users communicate with the AP
in MU-MIMO scheme. Each user and AP consist of single
antenna and N antennas, respectively. The considered AP can
be regarded as the base station (BS) in cellular communication
systems (e.g., eNode B (eNB) in LTE or eNode B (gNB) in
NR). We assume that all the users are perfectly synchronized
in time or frequency or both in time-frequency grid (e.g.,
using reference signals in LTE/NR). The signal received at
the AP during the uplink data transmission can be represented
as follows:

y =
K∑

k=1

√
Pkhkxk + n, (1)

where y is N × 1 complex-valued vector containing received
signals at the antennas in AP, and hk represents N × 1
complex-valued channel vector. Each element of hk represents
Rayleigh fading channel hk with zero mean and unit variance
from user k ∈ {1, 2, · · · ,K} to the antennas at AP. Moreover,
xk and Pk denote the transmit signal and its associated (trans-
mit) power, respectively for user k ∈ {1, 2, · · · ,K}. Here, n
represents an N × 1 complex-valued additive white Gaussian
noise (AWGN) vector, which contains (random) samples that
follow complex-valued Gaussian distribution with zero mean
and variance σ2. The AP applies linear equalizer, e.g., zero-
forcing (ZF), minimum mean square error (MMSE), etc. to
detect xk. In particular, AP applies a finite impulse response
(FIR) filter with 1×N dimensional coefficient vector wk for
user k to equalize the received signal y. Therefore, the output
(soft estimated) signal x̂k from the equalizer can be expressed
as

x̂k = wky =
√

Pkwkhkxk +
∑
j ̸=k

√
Pjwkhjxj +wkn. (2)

The signal-to-interference plus noise ratio (SINR) of user k
can be represented as

γk =
PkGk,k∑

j ̸=k

PjGj,k + σ2
, (3)

where Gk,k = |wkhk|2/(wkw
H
k ) and Gj,k =

|wkhj |2/(wkw
H
k ). Here, (·)H represents the Hermitian

operation.

III. JOINT MCS AND POWER ALLOCATION BY SCS
ALGORITHM

In this section, we formulate a joint MCS and power allo-
cation problem and develop a low complexity SCS algorithm
to solve the optimization problem. It is worth mentioning
that SCS is based on the coordinate descent algorithm [14]
that converts a multi-dimensional optimization problem into a
multiple single-dimensional search problems.
Problem Formulation: In most of the standardized wireless
communication systems, e.g., LTE, NR, etc., MCS index
jointly decides the baseband modulation and channel coding
schemes according to propagation channel conditions and
other factors. In addition to MCS, selecting the baseband
transmit power for each user according to propagation path
loss plays vital role for successful data transmission. A joint
design of MCS and transmit power addresses wireless channel
conditions, target received power, offset values to suppress
non-linearity, etc. simultaneously and has been regarded as a
vital design approach for LTE and NR communication systems
[11], [12]. It is worth mentioning that in user equipment
(UE), both MCS and transmit power possess discrete values
to address the limited energy availability. Hence, the joint
allocation of these parameters poses challenges in designing
low-complexity solution approaches.
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In order to jointly allocate MCS and transmit power, we
formulate an optimization problem as follows:

P1: max
Pk,ak,bk∀k

K∑
k=1

ak(1− e−bkγk) (4)

s.t.: Pk ∈ {P1,P2, · · · ,PLP }, ∀k, (5)

ak ∈ {A1,A2, · · · ,ALa}, ∀k, (6)

bk ∈ {B1,B2, · · · ,BLb}, ∀k, (7)

where (4) represents the MCS-dependent capacity metric with
parameters ak and bk [15], [16]. In particular, bk = f(ak),
where function f(·) can be evaluated empirically following
[16, Table 1] assuming symmetric channel capacity. Note
that the one-to-one mapping between ak and bk exists for a
wide-range of linear modulation schemes, e.g., 4-QAM, 16-
QAM, 64-QAM, etc. [17]. Moreover, (4) represents a tractable
format of the uplink network throughput, which assumes
that transmit signals present symbols from finite alphabet of
linear modulation schemes. Moreover, (4) is a function of
the baseband modulation scheme, channel coding scheme, and
transmit power. Constraints (5)-(7) represents discrete nature
of Pk, ak, and bk, respectively for user k ∈ {1, 2, · · · ,K}.
Here, Lp, La, and Lb denote the cardinalities of the sets
containing the discrete values of transmit powers, ak, and bk,
respectively. The solution of P1 represents the maximum data
throughput that can be obtained by jointly optimizing Pk, ak,
and bk. Let us define a vector of optimization variables as
Θ = [P1, P2, · · · , PK , a1, a2, · · · , aK ]T of dimension T × 1.
Denoting C(Θ) =

∑K
k=1 ak(1 − e−f(ak)γk) and exploiting

bk = f(ak), P1 can be reformulated as

P2: max
Θ

C(Θ) (8)

s.t.: Constraints (5) and (6). (9)

Note that the solution of P2 yields optimal set Θ∗, and the
optimal b∗k can be obtained from f(a∗k) for k ∈ {1, 2, · · · ,K}.
Solution Approach: We observe that P2 is a discrete op-
timization problem that is computationally challenging to
solve. We develop a SCS based joint MCS and trans-
mit power allocation scheme that entails low-computational
complexity while yielding close to (global) optimal per-
formance. In particular, we sequentially search the optimal
variable along each single dimension of Θ while keeping
rest of the (optimization) variables constant in an iterative
manner until the convergence is attained. Let us define
Θ for a given iteration i ∈ {0, 1, 2, · · · , } as Θ[i] =
[P1[i], P2[i], · · · , PK [i], a1[i], a2[i], · · · , aK [i]]T , where Θ[0]
indicates the initial set of the optimization variables. First, the
proposed scheme randomly selects the elements of Θ[0] from
(5) and (6) assuming the elements follow uniform distribution
(equally likely outcomes). Then for each successive iteration,
we sequentially calculate P ∗

k by maximizing C(Θ̃Pk
[i]) −

C(Θ[i]), where Θ̃Pk
[i] = [P1[i], · · · , P̃k, · · · , PK [i−1], a1[i−

1], · · · , aK [i − 1]]T while keeping Pj ̸=k and ak con-
stant for k ∈ {1, 2, · · · ,K}. Likewise, we calculate a∗k
by maximizing C(Θ̃ak

[i]) − C(Θ[i]), where Θ̃ak
[i] =

Algorithm 1 Joint Power and MCS Allocation with SCS
Scheme

1: Randomly initialize Θ[0] following element-wise uniform
distribution while satisfying constraints (5) and (6).

2: Calculate C(Θ[0]) and set Cmax = C(Θ[0]).
3: Set I and ϵ as the maximum number of iterations and

minimum absolute error between successive iterations,
respectively.

4: Set i = 1 and e = V , where V is a large real number.
5: while i ≤ I or e ≥ ϵ do
6: Set Θ[i] = [P1[i − 1], · · · , PK [i − 1], a1[i −

1], · · · , aK [i− 1]]T .
7: for k ∈ {1, 2, · · · ,K} do
8: Set Θ̃Pk

[i] = [P1[i], · · · , P̃k, · · · , PK [i − 1], a1[i −
1], · · · , aK [i− 1]]T .

9: if C(Θ̃Pk
[i]) > C(Θ[i]) then

10: Calculate Pk[i] = argmax
P̃k∈{P1,··· ,PLP }

C(Θ̃Pk
[i]) −

C(Θ[i]).
11: else
12: Set Pk[i] = Pk[i− 1].
13: end if
14: Set Θ[i] = [P1[i], · · · , Pk[i], · · · , PK [i − 1], a1[i −

1], · · · , aK [i− 1]]T .
15: end for
16: for k ∈ {1, 2, · · · ,K} do
17: Set Θ̃ak

[i] = [P1[i], · · · , PK [i], a1[i], · · · , ãk, · · · , aK [i−
1]]T .

18: if C(Θ̃ak
[i]) > C(Θ[i]) then

19: Calculate ak[i] = argmax
ãk∈{A1,··· ,ALa}

C(Θ̃ak
[i]) −

C(Θ[i]).
20: else
21: Set ak[i] = ak[i− 1].
22: end if
23: Set Θ[i] = [P1[i], · · · , PK [i], a1[i −

1], · · · , ak[i], · · · , aK [i− 1]]T .
24: end for
25: Calculate e = |C(Θ[i])− Cmax|.
26: Set Cmax = C(Θ[i]).
27: Set i = i+ 1.
28: end while

[P1[i], · · · , PK [i], a1[i], · · · , ãk, · · · , aK [i− 1]]T by consider-
ing fixed values for aj ̸=k and Pk, k ∈ {1, 2, · · · ,K}. All
these procedures in a given iteration are executed until the
convergence is achieved. The step-by-step procedure of the
proposed SCS scheme is depicted in Algorithm 1. It is worth
pointing out that the developed SCS based scheme entails
linear complexity with respect to K.
Exhaustive Search Scheme: A global optimal solution of P2
can be obtained by the brute-force exhaustive search (ES) over
all the possible combinations of Θ and finding out the com-
bination (of optimization variables) that yields the maximum
network throughput. Note that ES entails prohibitively high
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computational complexity as the cardinality of search space
for Θ grows exponentially with K.
Complexity: The computational complexity of ES scheme for
the considered problem is O(LK

p LK
a ), i.e., it (complexity)

grows exponentially with K. In contrast, the complexity
of SCS scheme can be represented as O((Lp + La)KĨ),
where Ĩ ≤ I denotes the number of iterations to converge
the algorithm. Here, I represents the maximum number of
iterations.

IV. SIMULATION RESULTS

Simulation Parameters: In this section, we evaluate the
performances of the proposed SCS-based joint Pk, ak, and
bk allocation scheme for the considered MU-MIMO system.
In particular, we solve problem P2 while considering that the
perfect channel state information is available at AP. To evaluate
the performance of the proposed SCS-based scheme and
compare it with ES algorithm, we conduct extensive Monte
Carlo simulation for 105 realizations in MATLAB and show
the average uplink network throughput. We consider a wide-
range of K (from 2 to 28) and N (from 2 to 64) to observe
throughput performance in different use-cases. Moreover, the
channel signal-to-noise ratio (SNR), which is defined as 1/σ2,
is considered over a range of -10 dB to 30 dB. The discrete
level of transmit power is taken from a set with lower and
upper limits of 12 dBm to 23 dBm, respectively. We consider
Turbo code with coding rate 1/3 as channel coding scheme
and quadrature PSK (QPSK), 16-QAM, 64-QAM, 256-QAM,
and 1024-QAM as baseband modulations schemes. Note that
for M -ary modulation scheme with a (n, k) channel coding
scheme, ak can be calculated by k log2 M/n. Moreover, we
calculate bk empirically for different values of ak following the
method discussed in [16, Table 1]. Throughout the simulations,
we set I = 20 and ϵ = 0.001.
Comparison Between SCS and ES: Figure 2 depicts the
throughput as a function of channel SNR for the proposed
SCS-based and ES resource allocation schemes. We set N = 8
and consider two scenarios for K. In particular, we assume
K = 2 and K = 4 for Scenarios 1 and 2, respectively. Our ob-
jective in Fig. 2 is to show how close the considered resource
allocation schemes perform in order to assess the applicability
of SCS-based scheme, particularly for large number of users.
For both the considered scenarios, the throughput increases
linearly in low- and mid-range of SNRs, whereas increase in
throughput becomes insignificant for high SNRs. It is worth
mentioning that both the proposed and ES schemes perform
very close to each other over the entire range of SNR and for
both of the considered scenarios. However, our proposed SCS-
based scheme exhibits much lower computational complexity
in joint allocation of MCS and transmit power in compared to
ES scheme. Hence, our proposed technique is a strong con-
tender for a large K and antenna configurations, as observed
in Fig. 2.
Throughput for Different Number of Users and Antennas:
Furthermore, we analyze the performance of the proposed
SCS-based resource allocation scheme for different K (with
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Fig. 2: Throughput as a function of SNR for SCS algorithm
compared to ES method.

constant N ) as well as for different N (with constant K) as
shown in Fig. 3 and Fig. 4, respectively. Figure 3 demonstrates
the throughput of the proposed SCS algorithm as a function
of SNR for increasing number of users while considering 32
antennas at AP. We observe in Fig. 3 that the throughput
increases with increasing number of users. However, the
increase in throughput is not linearly proportional with the
number of users. If we increase the number of users by the
same factor, increase in throughput will not be scaled in similar
manner. For instance, at 20 dB channel SNR, increasing K
from 4 to 10 helps increasing throughput by 2.6 bits/s/Hz,
whereas if K increases from 22 to 28 for the same setup, the
throughput increases by 0.3 bits/s/Hz. This finding is observed
due to the strong mutual interference among the users, as
evident in (3). Similar to Fig. 3, Fig. 4 shows the throughput as
a function of channel SNR for increasing number of antennas
while considering 10 users in the network. It is evident
from Fig. 4 that the throughput improves proportionally with
the increasing number of antennas. Thus, the performance
improvement for a given number of users can be enhanced
with increasing number of antennas at the BS.

Convergence Behavior of SCS Scheme: In Fig. 5, we
demonstrate the convergence behavior of the proposed SCS
algorithm as a function of computation steps for two different
configurations of N and K. In particular, we set (N,K) =
{(4, 4), (32, 16)}, where for each configuration, the proposed
scheme is evaluated for 0 dB and 20 dB SNRs. We observe
that the proposed algorithm converges quickly within finite
number of steps. However, the simulation results show that
the lower SNR results in quicker convergence of SCS scheme
as compared to the higher SNR for both of the considered
configurations.
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V. CONCLUSIONS

In this paper, we developed SCS-based joint MCS and trans-
mit power allocation scheme for an uplink massive MIMO
systems. We maximized MCS dependent capacity metric by
joint and optimal allocation of MCS and transmit power of
all the users. As practical MCS and power possess discrete
values, we formulated a discrete optimization problem that
requires ES to find optimal solution, in general. We developed
SCS based resource allocation scheme that shows significantly
lower computational complexity compared to ES scheme and
hence can be implemented efficiently in practical systems.
Simulation results reveal that the proposed SCS algorithm
performs very close to computationally intensive ES scheme
for different number of users and antenna configurations at
AP.
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