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Abstract—This paper proposes a generative adversarial net-
work (GAN) based channel estimation scheme for intelligent re-
flecting surface (IRS)-aided single-input multiple-output (SIMO)
communication systems. The proposed novel GAN-based deep
learning technique is efficient to estimate channels in IRS-
aided wireless communication systems with high accuracy. The
generator of GAN can reproduce data whose distributions are
similar to the actual underlying channel. Consequently, the
proposed approach does not require the statistical distribution
of the underlying channel to be known in advance. Simulation
results prove that the proposed GAN-based channel estimation
approach outperforms the conventional least square estimation
(LSE) approach significantly in terms of estimation accuracy as
well as provides better performance than a fully connected deep
neural network (DNN) and convolutional neural network (CNN)-
based methods.

Index Terms—Intelligent Reflecting Surface, Generative Ad-
versarial Network, Artificial Intelligence, Channel Estimation,
6G.

I. INTRODUCTION

In order to support the rising demand for ubiquitous wireless
connectivity anywhere in the upcoming Internet-of-Everything
(IoE) era, along with the soaring data-hungry applications de-
velopment, fifth-generation (5G) cellular networks may not be
adequately efficient to meet the demands in terms of capacity.
This observation leads the researchers to carry out cutting-
edge research to explore newer dimensions in upcoming
sixth-generation (6G) cellular technology. Intelligent reflecting
surface (IRS) is a key enabler of data transmission technology,
with a vision to be deployed in 6G cellular communication
systems to significantly enhance spectral efficiency. IRS is
the advanced version of massive multiple-input multi-output
(mMIMO) data transmission system [1], which is the prime
transmission technology in 5G cellular networks. IRS is a
controllable metasurface comprised of a large number of
passive reflecting elements (PREs) that use very little power to
control the phase and/or amplitude changes of incident signals
to the IRS [2] - [5].

For efficient data detection at the receiver and precoding at
the transmitter, the system requires channel state information
(CSI) to be known. When the IRS consists of fully passive
elements, the direct channel estimation of the link between
the passive IRS and an active transceiver node becomes
complicated and cumbersome owing to having a large number
of channel reflecting coefficients and no active radio frequency
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(RF) chain. To encounter these challenges, setting the limi-
tation of pilot sequence length equal to or greater than the
number of receiver antennas leverages the training overhead
in the channel estimation process. The primary challenges in
fully passive IRS channel estimation of the uplink communi-
cation systems are the joint optimization of orthogonal pilot
sequences, the reflection pattern of the reflective elements,
and the efficient method to accurately estimate cascaded
channels [2]. The statistical signal processing method least
square estimation (LSE) is not optimal, hence, the technique
may not estimate channels with good accuracy due to rapid
change in the wireless propagation environment, data traffic
pattern, multi-user interference, and underlying non-Gaussian
noise. In this circumstance, the fusion of artificial intelligence
(AI) techniques can smartly and efficiently shed light on
wireless channel estimation with high accuracy and low run-
time complexity compared to the conventional statistical signal
processing approach by approximating complicated computa-
tions.

Deep learning-based data-driven approaches have widely
been explored in channel estimation and prediction of IRS-
aided communication systems [6] - [8]. It is shown that
deep learning approaches are capable of estimating multi-
dimensional channel data with relatively better accuracy than
statistical signal processing methods [9] - [11]. On the other
hand, generative adversarial networks (GANs) are comprised
of a pair of convolutional neural networks known as generator
and discriminator, are gaining significant popularity and being
regarded as a promising technique in a wide range of sectors
including channel estimation of communication systems in
recent times [12] - [14].

To the best of our knowledge, GAN-based channel estima-
tion for IRS-assisted communication systems has not yet been
addressed in the literature. In this paper, we propose GAN-
based channel estimation for an IRS-assisted single-input
multiple-output (SIMO) narrowband communication system.
The primary benefit of the proposed novel approach is that
the GAN-based approach can determine the distribution of
channel samples without using pilot signal information in
the initial training phase. Once trained, the backpropagation
optimization technique can accurately estimate the channel
exploiting the GANs efficiency to analyze multi-dimensional
correlated channel data. We have demonstrated that the GAN-
based generative model-driven approach can estimate IRS
cascaded channels with significantly better accuracy compared
to the LSE method and even better than the deep neural
network approach.

The rest of the paper is organized as follows. Section II
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Fig. 1: IRS-aided single user SIMO system.

describes the system model. In section III, the proposed GAN
model and the baseline schemes have been illustrated. The
discussion on simulation results has been included in section
IV. Finally, section V concludes the paper.

II. SYSTEM MODEL

In Fig. 1, we consider a time division duplex (TDD)
integrated IRS-aided narrowband flat fading uplink wireless
transmission system with a base station (BS), an IRS panel,
and a user. We assume the BS consists of M antennas, the user
is comprised of a single antenna, and the IRS panel is equipped
with L PREs. Each reflecting element l ∈ {1, 2, ..., L} can re-
flect the incident signal. The complex reflection coefficient of
lth PRE can be denoted as ϕl = βle

jαl , where, the amplitude
gain and the phase shift of lth element are represented by
βl ∈ [0, 1] and αl ∈ [0, 2π) respectively. Thus, the reflection
coefficient matrix becomes Φ = diag (ϕ1, ϕ2, ..., ϕL), where,
diag(., ., .) represents the diagonal matrix. Refer to Fig. 1, due
to blockage, we assume there is no direct line-of-sight (LoS)
communication between user equipment (UE) to BS, and IRS
aids BS and UE in data transmission. It is worth noting that the
end-to-end propagation channel between BS and UE consists
of the BS-to-IRS and IRS-to-UE communication links via IRS.
As all the reflecting elements at IRS are assumed to be passive,
the estimation of individual channel gains for BS-to-IRS and
IRS-to-UE links cannot be conducted in a straightforward
manner [2]. Therefore, estimation of the end-to-end cascaded
channels (for a given Φ) between BS and UE via IRS is
a feasible approach. However, because of the large L, the
computational complexity of estimating the cascaded channels
increases significantly. Our aim in this paper is to leverage
GAN to develop a channel estimation scheme that strikes a
balance between performance and (run-time) complexity [3].
In this paper, we develop a GAN-aided channel estimation
scheme for two modes of operation; a) sequential on-off and
b) all-on of the PREs [2].

A. Sequential On-Off
In the sequential on-off approach, the UE-IRS-BS cas-

caded channels are estimated sequentially by activating one
of the PREs (while turning off L − 1 elements) of IRS at
a time. We assume the UE transmits the orthogonal pilot
signals xp ∈ C1×τ of length τ ≥ 1 (in samples) for
channel estimation. The channels of UE-to-IRS and IRS-to-
BS communication links are assumed to follow independent

and identically distributed (i.i.d.) Rician fading because of the
high likelihood of the presence of LoS communication link.
Considering the normalized power constraint with a signal-to-
noise ratio (SNR) denoted by γ, the received signal at the BS
when l ∈ {1, 2, · · · , L} is active can be written as

Y l =
√
γGH

l ϕlhlxp +N l (1)

where, Y l ∈ CM×τ is the received signal matrix at BS when
l ∈ {1, 2, · · · , L} PRE is active, Gl ∈ C1×M is the matrix of
channel gains between PRE l ∈ {1, 2, · · · , L} and BS, hl is
the channel gain between UE to PRE l ∈ {1, 2, · · · , L}, and
N l ∈ CM×τ is the additive white Gaussian noise (AWGN)
matrix. It is worth mentioning that each element of GH

l and
hl are i.i.d Rician fading with Rice factors KGl

and Khl
,

respectively. Each element of nl follows Gaussian distribution
with zero-mean and unit variance. Our objective is to estimate
the cascaded channel Hl = GH

l hl from the received signal
yl and known xp when PRE l ∈ {1, 2, · · · , L} is turned
on by the proposed GAN-based channel estimation scheme.
It is worth pointing out that we perform the estimation of
cascaded channels sequentially to obtain the estimates of
H1,H2, · · · ,HL of all the cascaded channels between UE
and BS. Although this sequential on-off approach is a simple
channel characterization method to tackle IRS channels, it
yields high latency in signal processing and results in weak
received signal strength due to having only one reflecting
element turned on at a time [2], [4].

B. All-On
In this mode of operation, the UE-IRS-BS cascaded chan-

nels are estimated when all the PREs of IRS are turned on
[15]. Let us denote G ∈ CL×M as the channel matrix from
IRS to BS and h ∈ CL×1 as the channel gain vector from UE
to IRS. Considering xp ∈ C1×τ , where τ ≥ L, let us introduce
U = [u1u2...uL] that satisfy U = GHdiag(h), where
u ∈ CM×1. The phase shift matrix Γ ∈ Cτ×L containing
phase-shifts of L PREs for τ samples in a given coherence
time interval can be defined as follows:

Γ =


ϕ1,1 · · · ϕ1,L

ϕ2,1 · · · ϕ2,L

. · · · .

. · · · .
ϕτ,1 · · · ϕτ,L

 ,

where ϕt,l represents the phase reflection coefficient for sam-
ple t ∈ {1, 2, · · · , τ} and l ∈ {1, 2, · · · , L}. Moreover,
we denote Q = Γ ⊗ IM , where Q ∈ CτM×ML and
IM ∈ CM×M is the identity matrix. The operator ⊗ represents
the Kronecker product. Defining the pilot sequence matrix
X ∈ CMτ×Mτ for a given coherence time interval as X =
diag (x11M , x21M , ..., xτ1M ), where 1M ∈ CM×1 is a vector
of ones and xi, i ∈ {1, 2, · · · , τ} are the elements of xp.
Let us introduce R = XQ, where R ∈ CτM×ML and
Θ = [uT

1 ,u
T
2 , · · · ,uT

L]
T . Here, Θ ∈ CML×1 denotes the

vector of channel gains when all PREs are on. The received
signal z at BS while setting all PREs active (turned on) over
τ samples can be represented as

z =
√
γRΘ+w (2)

where z ∈ CτM×1. Here, w ∈ CτM×1 is the AWGN noise
vector, where each element follows Gaussian distribution with
zero-mean and unit variance. In this mode of operation, our
goal is to precisely estimate Θ, which essentially contains all
the elements of the cascaded channels.
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Fig. 2: (a) Training GAN (b) Real-time IRS channel
estimation with GAN.

III. PROPOSED GAN-BASED IRS CHANNEL ESTIMATION

In this section, we explain how to configure different parts
of GAN model for the proposed data-driven channel estimation
scheme of the considered IRS-aided communication system.
Further, we describe the baseline schemes to compare the
performance of our proposed scheme.

A. GAN-based IRS Cascaded Channel Estimation

The zero-sum, min-max game theory over two adversarial
networks is the foundation of GANs [16]. By competing two
convolutional neural networks (the generator and the discrim-
inator) against one another, GANs create fresh synthetic data
that resembles real data distribution. The generator makes
an effort to accurately represent the real data distribution
while generating new data samples. On the other hand, the
discriminator is typically a binary classifier that makes an
effort to intelligently distinguish between real and generated
fake data as precisely as feasible. Since GAN has the ability
to reproduce data samples having the same distribution as the
actual data samples by optimizing the generator, thus, it can
generate increased length data sequence which favors channel
estimation with high accuracy supported by Cramer-Rao lower
bound law [14].
Proposed GAN Architecture: Refer to Fig. 2(a), generator G
attempts to create a fake sample data by using the Gaussian
random noise vector N as input. The generated fake data
is then sent to the discriminator. The discriminator D is a
binary classifier that simultaneously examines real and fake
samples produced by the generator in an effort to distinguish
between the real data of the channel gain and the generated
fake data of the channel gain. Based on the results of the
discriminator, the parameters of the generator are optimized
while training to regenerate fake samples similar to the real
data distribution. In this work, we adopt the backpropagation
concept of the pretrained generator model [13] in order to
identify the optimized noise vector Nopt. Instead of using
Wasserstein GAN (WGAN) [13], we implemented an op-
timized Deep Convolutional GAN (DCGAN) model in our
considered system model. DCGAN performs better for a
relatively large dimensional problem (e.g., channel estimation
problem in IRS-assisted communication systems). DCGAN
has more stable training functionality, hence, it results in quick
convergence [17] - [19]. Although the WGAN model has a

more insightful cost function than the DCGAN model, WGAN
does not perform well while configured with a momentum-
based optimizer like Adam [20]. The training of GANs is
executed offline using Gaussian random noise N . Note that the
training datasets are generated over the entire range of γ. Once
trained, the generator model is saved and then the pretrained
generator model is optimized to determine Nopt computing
the corresponding minimum value of the target function. The
optimization operation is accomplished as

N on-off
opt = argmin ||Y l −

√
γϕlGTr(N on-off)xp||2 (3)

and
N all-on

opt = argmin ||z −√
γRGTr(N all on)||2 (4)

for sequential on-off and all-on operations, respectively.
Therefore, the corresponding generator model of the
optimized noise vector determines the estimation of the
cascaded channels as Ĥl = GTr(N on-off

opt ) and Θ̂ = GTr(N all-on
opt )

for sequential on-off and all-on schemes, respectively. Here,
Ĥl and Θ̂ represent the estimated channel gains for sequential
on-off and all-on schemes, respectively.

Algorithm 1 Real-Time GAN-based IRS Channel Esti-
mation
Input: Gaussian random noise N , actual channel sam-
ples Hl (Θ) for sequential on-off (all-on) scheme
Output: Estimated channel gain Ĥl (Θ̂) for sequential
on-off (all-on) scheme
1: Train the GAN model G offline, generate Ĥl (Θ̂)
for sequential on-off (all-on);
2: Save the trained generator model GTr;
3: Load GTr, yl (z), and xp;
4: for each iteration j do
5: GTr(N );
6: Calculate ||yl − GTr(N on-off)xp||2 (||z −
RGTr(N all-on)||2) for sequential on-off (all-on);
7: end for
8: Obtain N on-off

opt (N all-on
opt )

9: Calculate Ĥl (Θ̂)
10: return Output

Training Arrangements: In this work, we use deep con-
volutional GAN architecture [17] for channel estimation of
IRS-aided communication systems. It is worth noting that
we generated the input for our considered generator model
following a standard Gaussian distribution with zero mean
and unit variance, rather than the uniform distribution used
in [17]. Furthermore, adopting a Gaussian distribution for
the input signal of the generator model is crucial in our
considered IRS-assisted system, as the underlying noise is
Gaussian, and our aim is to minimize the search space for
our proposed non-linear L2-norm-based channel estimation
scheme. GAN architecture employs deep convolution neural
networks (CNN) for both generator and discriminator networks
to provide stable training. We have employed various activa-
tion functions (AF) for the generator and discriminator models
to accurately capture the data suitable for different layers
within the network models. In the considered GAN model
in Fig. 3, the first layer of the generator consists of a fully
connected layer followed by a rectified linear unit (ReLU) AF
and batch normalization layer. Then the input data is reshaped
into a three-dimensional (3D) vector. The following two
layers are the Conv2DTranspose (two-dimensional transposed
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Fig. 3: GAN schematic diagram.

convolution) layer formed with kernel size (a × a), strides
(c × c), activation ReLU and batch normalization layer. The
Conv2DTranspose layer performs upsampling and convolution
simultaneously. The upsampling increases the dimension of
the data of the previous layer. The final layer is the output
layer, consisting of a Conv2D (two-dimensional convolution)
layer with a ‘linear’ AF and a kernel size of (a × a). The
generator model upsamples the input data to generate the
desired output dimension. On the other hand, the first two
layers of the discriminator network are composed of a Conv2D
layer with a kernel size of (b×b) and strides (c×c), followed
by a batch normalization layer, a leaky rectified linear unit
(LeakyReLU) AF, and a dropout layer. The negative slope
coefficient of LeakyReLU is set to α = 0.2, and the dropout
layer rate is set to 0.4, which represents the fraction of input
units to be dropped during the training process. Since the
last layer is a fully connected layer with a single neuron,
we added a ‘Flatten’ layer to make the dimension of the last
layer compatible with the previous layer’s multi-dimensional
data. The AF ‘sigmoid’, the loss function ‘cross entropy’,
and the optimizer ‘Adam’ are included in the last layer. The
discriminator network downsamples the input data by halves.

The parameters in the offline training phase can be denoted
as Es a sequence of random Gaussian noise and Fs be
the corresponding output sequence of channel gain from G
model, where s represents the total number of sequences.
Thus, the input-output pair of training datasets can be
mathematically written as {(E1,F1), (E2,F2), ..., (Es,Fs)}.
Es is chosen as latent dimension × number of samples,
where, the latent dimension L is a random number, and
the number of samples equal to the size of the dataset.
The parameters in the optimization stage (as defined in eqs.
(3) and (4)) during the online channel estimation phase
can be expressed by Ys and Xs, denoting a sequence of
the received signal and input pilot sequence, respectively.
Thus, the relation can be mathematically represented as
{(Y1,F1,X1, E1), (Y2,F2,X2, E2), ..., (Ys,Fs,Xs, Es)},
where the minimum value of the target function is computed
using the sequences Ys,Fs,Xs and the corresponding Es is
the optimized noise sequence. Ys,Fs, and Xs represented
as M × L × 2 real-valued matrices in the computation
process. Hence, increasing L increases the training overhead
significantly for both modes of the IRS. Since the DCGAN
training process is faster than the WGAN, thus, the DCGAN

model is more efficient for channel estimation than the
WGAN model in the considered system model. The
stochastic gradient descent (SGD) algorithm is used in the
training phase to optimize the weights of the GAN model.
Both the generator and discriminator model optimize their
performance simultaneously while executing the training
phase. The training dataset has been divided into batches
per epoch. The discriminator model gets updated on weight
parameters in two separate batches; one batch is used for
updates on real data and another batch is used for updates on
generated fake data.

B. Computational Complexity
The computational complexity in forward and backward

propagation in the offline training phase of the GAN scheme
(considering both generator and discriminator networks) is
represented as O

(
2
(
HFc,IIG + C2K2

∑TG
t=1 D

2
t

)
V U

)
+ O

(
2
(
C2K2

∑TD
t=1 D

2
t +HFc,OE

)
V U

)
, where C, K,

Dt, t, HFc,I , IG , HFc,O, E, U , and V represent the channel
size, kernel size, feature map of the respective hidden layer,
number of hidden layers, number of neurons in fully con-
nected layer at generator model, input of generator, number
of neurons in fully connected layer at discriminator model,
number of features in fully connected layer at discriminator
model, number of epochs, and number of batches per epoch
respectively. Note that the computational complexity in opti-
mizing the GAN model varies with the IRS mode of operation.
In sequential on-off mode, the computational complexity in
optimizing the GAN model is linearly incremental with the
increase of L, since only one PRE is turned on at a time. On
the contrary, for the all-on mode of operation, the optimization
steps of the GAN model are executed once for L number of
PREs, since all PREs are on. While comparing our proposed
scheme with [9], it can be inferred that both models show
polynomial complexity.

C. Advantages of GAN in Cascaded Channel Estimation
The proposed data-driven channel estimation scheme ex-

hibits low run-time (online) computational complexity to es-
timate channel gains for IRS-aided wireless communication
systems compared to state-of-the-art estimation schemes, e.g.,
minimum mean square error (MMSE) or conventional max-
imum likelihood estimation (MLE) schemes. Because of the
cascaded nature (non-Gaussian distribution) of the underly-
ing channel (high dimensional matrix) between BS and UE,
it is mathematically intractable to develop a linear MMSE
(LMMSE) scheme to estimate the channel [10]. The MLE
requires either matrix inversion or infinitely large search space
and hence requires more computations to estimate the channel
in real-time. However, leveraging the GAN architecture assists
in capturing the correlation of the high dimensional cascaded
channel matrix by exploiting its inherent mechanism and
thereby reduces the search space for L2-norm estimation
scheme.

D. Baseline Approaches
Deep Neural Network (DNN): We consider a DNN model to
compare its performance with the proposed GAN model. The
DNN model takes the output signal of the system model as
input and solves the computational model to provide the output
estimated channel gain as the actual channel. The DNN model
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is formed with five fully connected layers, including input and
output layers, out of which three layers are hidden layers.
Convolutional Neural Network (CNN): A convolutional
neural network (CNN) model has been considered for perfor-
mance comparison with the proposed GAN model. The first
layer of the CNN model is the input layer, which captures the
received signal of the considered system. The three middle
layers are the core layers, where the majority of computations
and learning occur. Each stack of middle layers consists of a
Conv2D (two-dimensional convolution) layer, batch normal-
ization layer, activation ReLU, and AveragePooling2D (two-
dimensional average pooling) layer. The final layer is the fully
connected output layer.
Least Square Estimation (LSE): We consider the LSE
method as another baseline approach. The estimated channel
using the LSE method can be expressed as

Ĥl = ((ζζH)−1ζyH
l )H (5)

and
Θ̂ = ((RHR)−1RH)z (6)

for sequential on-off and all-on modes of operations, respec-
tively, where ζ =

√
γϕlxp.

IV. SIMULATION RESULTS

In this section, we present the numerical results for the
proposed data-driven channel estimation scheme to evaluate
their performances and compare them with the considered
baseline schemes. We first show the impact of training the
GAN model on the estimation error over a range of SNR while
considering different training parameters. We then illustrate the
comparative performance evaluations of the proposed scheme
with baseline approaches in terms of normalized mean square
error (NMSE) that can be calculated as follows:

NMSE = E
{ ||ϱ− ϱ̂||2

||ϱ||2
}
, (7)

where ϱ ∈ {Hl,Θ} and ϱ̂ ∈ {Ĥl, Θ̂}. The dataset generation
for training and testing is accomplished using MATLAB via
Monte Carlo simulations, and the training and optimization
operations are performed using the Python TensorFlow frame-
work. In particular, we generate 50,000 realizations of random
data samples for training and 50,000 realizations for testing
purposes for both the proposed and baseline schemes. For
all the considered experiments, we set M = 8, L = 2p,
p = 3, and KGl

= Khl
= 10 dB. While configuring the

GAN model, we set L = 500, a = 4, c = 2, and b = 3.
Further, we consider 2000 epochs during the training phase
while setting 1000 batches in each epoch. We consider real
and imaginary parts separately while representing each signal
in a 3D vector. The training parameters are tuned and remained
the same throughout the entire simulations after a rigorous
trial and error process while assuring the tradeoff between
performances and computational complexity. The training is
executed with the ADAM optimizer and a learning rate of
0.0002 for the proposed and baseline models to ensure a fair
comparison. It is worth mentioning that the convolution blocks
in the considered GAN model can efficiently analyze high
dimensional correlated channel gain data samples due to the
distinct architecture of the generative adversarial networks.
The adversarial training process of the GAN model is pivotal
to significantly reduce the suitable search range of channel

gain in order to identify its correlation with the actual channel
gain data samples.
Effect of GAN-parameters on Training: In Fig. 4, we
demonstrate the impact of the number of epochs and the size
of the training dataset on the accuracy of the proposed GAN-
aided channel estimation scheme. We consider several config-
urations of training parameters by tuning the number of epochs
and the size of training datasets. For each configuration, the
estimation accuracy is calculated via NMSE as a function of
SNR γ. We observe that increasing γ for each configuration
increases the estimation performance and hence decreases the
NMSE. Moreover, increasing the number of epochs and the
size of datasets decreases the channel estimation error notably.
However, increasing the size of the datasets beyond 50,000
and the number of epochs more than 4000 does not yield
significant performance gain in terms of NMSE. It is worth
mentioning that increasing the number of datasets and the
number of training epochs essentially increases the training
computations and time, hence, it requires a tradeoff between
optimal performance and computational complexity.
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Fig. 4: Training impact of GAN on estimation error.
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Fig. 5: Estimation error for IRS sequential on-off.

Comparison of Proposed Channel Estimation Scheme with
Baseline Schemes: In Figs. 5 and 6, we demonstrate the
effectiveness of the proposed GAN-based channel estimation
scheme for sequential on-off and all-on schemes, respectively.
In particular, we present the NMSE of the proposed and
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Fig. 6: Estimation error for IRS all-on.

baseline schemes as a function of γ. For both the considered
sequential on-off and all-on schemes, we observe that NMSE
decreases with increasing γ, as expected. It is seen that
the NMSE performance of both sequential on-off and all-
on modes of operation are almost similar, but the hardware
complexity and device latency of the sequential on-off mode
are much higher compared to all-on. The sequential on-off
mode requires an additional switching mechanism to turn on-
off the PREs of IRS in order to control the amplitude of the
individual PRE that increases hardware complexity. Moreover,
the proposed GAN-aided channel estimation scheme outper-
forms the LSE, DNN, and CNN schemes over the entire range
of considered γ. However, the performance gap between the
proposed and LSE schemes is large for low SNR and small for
high SNR. For instance, denoting the performance improve-
ment factor ρ = NMSE of Proposed Scheme/NMSE of LSE,
γ = 10dB and γ = 25dB results in ρ = 20 and 4,
respectively for all-on scheme. The NMSE performance is also
compared with the multiple-residual dense network (MRDN)
model proposed in [9], the WGAN [13], and the WGAN-GP
[21]. The results demonstrate that the proposed GAN model
can estimate the cascaded channels of IRS for both modes of
operation with slightly lower error than [9], [13], and [21]. It
is worth mentioning that adversarial networks can deeply ana-
lyze multi-dimensional data to extract the correlation features
more efficiently during the training process while considering
addressing different levels of noise power spectral density. On
the contrary, the LSE scheme degrades the estimation accuracy
in low SNR. However, the LSE approach includes matrix
inversion and multiplication to compute cascaded channel
gains that show less complexity than the proposed scheme. The
deep convolutional layers of the generator and discriminator
networks in the considered GAN yield enhanced performance
in predicting highly correlated cascaded channels as long as
the hyper-parameters are optimized efficiently.

V. CONCLUSION

In this paper, we proposed a novel GAN-based channel
estimation method for IRS-aided communication systems. The
benefits of using GAN to analyze the correlation of multi-
dimensional channel data have been explored to leverage
accurate channel estimation in IRS-assisted communication
systems. Furthermore, it has been demonstrated that the opti-
mized GAN-based approach can estimate actual IRS cascaded

channels with greater accuracy compared to the LSE method.
The proposed approach can also outweigh widely employed
DNN and CNN solutions in terms of accuracy in estimating
IRS cascaded channels. In future work, GAN-based channel
estimation can be implemented in more complicated IRS-
assisted communication systems and could be compared with
some other highly optimized deep learning techniques to
determine the best technique in order to ensure high accuracy
in channel estimation.
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