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Abstract—This paper aims to enhance the cascaded channel

estimation process of intelligent reflecting surface (IRS)-aided

communication systems while considering the detrimental effect

of pilot signal contamination. When the transmitter is equipped

with massive multiple-input multiple-output (mMIMO) antennas,

and the IRS consists of a large number of reflecting elements,

it is practically infeasible to allocate orthogonal pilots over each

cascaded link, each consisting of a pair of antenna and reflecting

elements. Reusing pilot signals over multiple parallel cascaded

links causes interference, known as pilot contamination. Severe

pilot contamination deteriorates the accuracy of the channel

estimation process significantly. Accurate estimation of high-

dimensional cascaded channels of IRS is crucial to distribute

narrow beams in the desired direction, which becomes even

more cumbersome in the presence of pilot contamination. To

address this challenge, we propose deep learning-empowered

two approaches to accurately estimate the channel gains of the

cascaded links. Subsequently, learning from the correlation of

the estimated cascaded links, we predict the cascaded links

for other reflecting elements. Simulation results demonstrate

the improved performance of the proposed techniques over the

baseline schemes.

Index Terms—IRS, cascaded channel estimation, pilot contam-

ination, deep learning, B5G.

I. INTRODUCTION

The goal of next-generation mobile communication is to
combine human communication with seamless connectivity
for machines and objects that make up the Internet of Every-
thing (IoE). Several developing technologies, such as wear-
able gadgets, virtual/augmented reality, and fully immersive
experience (3D) in real-time are influencing human end users’
behavior, and they have unique user satisfaction criteria [1].
As a result, these data-hungry use cases push the wireless
standards in several areas, including data throughput, latency,
reliability, device/network energy efficiency, traffic volume
density, mobility, and connection density. The fifth genera-
tion (5G) and beyond 5G (B5G) wireless networks envision
to greatly facilitate the implementation of such emerging
use cases by offering heterogeneous service requirements
like enhanced mobile broadband (emBB), massive machine-
type communications (mMTCs), and ultra-reliable low-latency
communications (URLLCs) [2], [3].

Intelligent Reflecting Surface (IRS) is a cutting-edge tech-
nology in the field of wireless communications and signal
processing. It is designed to enhance the performance of
wireless communication systems, such as 5G and B5G, by
optimizing the propagation of electromagnetic waves [4]. IRS
consists of a large number of passive reflecting elements
(PREs), such as antennas or metasurfaces, which do not
have their own power source. Instead, they rely on incident
electromagnetic waves from nearby transmitters that possess
the ability to adjust the phase and amplitude of reflected
waves to direct the signal beam in a desired direction [5].
This adjustment is dynamically controlled based on signal
characteristics and system requirements to optimize signal
strength and quality at the receiver, leading to improved data
rates, reduced latency, and overcoming interference. However,
because the IRS does not have an active radio frequency
(RF) chain when equipped solely with PREs, the estimation
of cascaded channels consisting of the base station (BS)-to-
IRS and IRS-to-user equipment (UE) is a challenging task.
Moreover, conventional estimation techniques require high
computational complexity to estimate the channel coefficients
of IRS-aided cascaded channels because of the high dimension
of the channel matrix. Accurate knowledge of the channel cor-
relation matrix is also required. Overall, channel estimation for
the cascaded channels in an IRS-aided system is a cumbersome
task.

In wireless communication systems, pilot signals are ref-
erence (known) signals transmitted by the transmitter to exe-
cute necessary tasks such as estimating the wireless channel
conditions, synchronizing transmitter and receiver clocks, and
optimizing beamforming. When nearby transmitters send the
same pilot signals at the same time, it causes distortion or in-
terference in identifying channel conditions and inaccurate es-
timation of channel state information (CSI), leading to severe
performance degradation of the communication systems. This
phenomenon is known as pilot contamination. The detrimental
effect of pilot contamination focusing on massive multiple-
input-multiple-output (mMIMO) communication systems has
been investigated in [6] - [10], wherein the authors proposed



the design of pilot patterns, the pilot allocation scheme, and
the precoding scheme as different solution approaches.

The deep learning (DL) technique is becoming prevalent
in diverse fields, including the domain of wireless commu-
nications, to solve highly complex non-linear problems at
the physical and link layers efficiently by learning from data
without the explicit use of feature engineering. Among other
contributions, [11] - [13] employed different deep neural net-
works (DNN) to estimate propagation channels and suppress
the effect of pilot contamination in mMIMO systems.

To the best of our knowledge, the effect of pilot contamina-
tion in IRS-assisted communication systems has not been ad-
dressed using a data-driven approach in the literature yet. This
paper investigates the effect of pilot contamination in IRS-
aided communication systems and proposes two data-driven
approaches to jointly estimate cascaded channels of the IRS
while considering the occurrence of pilot contamination. Our
proposed schemes consist of two steps. In the estimation step,
we estimate channel gains of a set of PREs by sequentially
turning on a single PRE. In the prediction step, we predict
the channel coefficients of all other PREs leveraging the data-
driven learning of the correlations that exist among all the
estimated cascaded channel gains. Fully connected DNNs are
used to perform the tasks in both steps. The trade-offs in terms
of accuracy and computational complexity of the proposed
methods are thoroughly investigated. Simulation results reveal
the superior performance of the proposed methods and their
performance gap over baseline schemes, especially in the
range of low signal-to-noise ratio (SNR) values.

The rest of the paper is organized as follows. In Section
II, we describe the system model and signal propagation. The
proposed DNN-aided channel estimation and prediction with
pilot decontamination are illustrated in Section III. Simulation
results with numerical evaluations are discussed in section IV.
Finally, Section V concludes the paper.

II. SYSTEM MODEL

We consider the scenario of an urban area in the city center,
where skyscrapers hinder line of sight (LoS) links in cellular
communications. In the near future, skyscrapers in urban areas
will be equipped with low-cost, large but lightweight, and
easily installable IRS panels [14]. This facilitates the robust
propagation of radio signals in the desired direction while
reducing the multipath fading effect of radio signals. In Fig.
1, we consider the IRS-aided narrowband downlink wireless
transmission system with a BS, IRS panel, and a single UE.
It is worth mentioning that the considered model and the
proposed channel estimation and prediction schemes can be
extended for multi-user scenarios. We assume that the BS
is equipped with M antennas, the IRS panel consists of L
PREs, and the UE contains a single antenna. The considered
system model can operate in both sub-6 GHz and millimeter
wave bands. Note that there is no direct link between BS
and UE in the considered system due to obstacles; hence, the
communication between BS to UE occurs via the IRS. The
incident signal at the IRS can independently undergo a phase
shift and an amplitude change to each PRE l 2 {1, 2, ..., L} of

Fig. 1: IRS-aided downlink communication system.

the IRS. The complex reflection coefficient of lth PRE can be
denoted as �l = �lej↵l , where the amplitude gain and phase
shift of the lth element are represented by �l 2 [0, 1] and
↵l 2 [0, 2⇡), respectively [15]. To increase the strength of the
reflected signal and to reduce complexity in cascaded channel
estimation, we assume that �l = 1 for l 2 {1, 2, · · · , L}.
Let us denote the phase shift coefficient matrix as � =
diag (�1,�2, ...,�L), where diag(., ., .) represents the diagonal
matrix.

To execute channel estimation, we consider the sequential
on-off mode of operation of the PREs for the considered IRS
due to its simplicity [4], [15], [16]. Therefore, only one of
L PREs is activated at a time to reflect the signal in the
desired direction. Since all the reflecting elements are passive,
the estimation of the channel from BS to IRS and IRS to
UE cannot be computed separately. By turning on one of
the PREs of the IRS at a time, the BS-IRS-UE cascaded
channels are estimated sequentially. It is assumed that the
channels of BS-to-IRS and IRS-to-UE communication links
follow independently and identically distributed (i.i.d.) Rician
fading, due to the presence of the LoS links with Rice factors
Kgm,l and Khl , respectively. Let us assume the BS transmits
pilot signals xp 2 C

1⇥⌧p of length ⌧p � M (in samples),
p 2 {1, 2, ..., ⌧p} for channel estimation such as

xH

p1xp2 =

(
⌧p p1 = p2

0 p1 6= p2,
(1)

where (.)H denotes Hermitian matrix, p 2 {p1, p2}, and
||xp||

2 = ⌧p. We incorporate pilot contamination in the
considered scenario, denoting M < M as the number of
contaminated pilot sequences. It is worth noting that since the
total pilot sequences ⌧p do not consist of complete orthogonal
pilots, it cannot ensure orthogonal pilot signal transmission
for all the transmitter antennas by the BS. The corresponding
received signal of the contaminated pilot signal transmission
at time t by the UE reflected through the lth PRE can be
represented as

yl =
X

m2SM

p
Pmh⇤

l
ej�lgm,lxm + nl, (2)



where SM denotes a set of transmitter antennas that use the
same pilot sequence at the same time. Here, yl depicts the
received signal at UE via lth PRE, P denotes the transmit
power, hl represents the channel gain between lth PRE of
IRS and UE, gm,l signifies the channel gain between BS to
IRS, xm defines the contaminated pilot signal, and nl depicts
the additive white Gaussian noise (AWGN) with zero-mean
and unit variance. Here, (.)⇤ represents a conjugate operation.
We denote ⇣m,l = h⇤

l
ej�lgm,l as the cascaded channel gain

associated with the transmit antenna m and PRE l. To estimate
⇣m,l, we compute zl = ylx⇤

m
/
p
M as follows:

zl =
X

m2SM

p
PmM⇣m,l +

nlx⇤
m

p
M

. (3)

Our goal is to estimate the cascaded channel ⇣m,l from zl
when PRE l 2 {1, 2, ..., L} is turned on. As such, we are
required to perform the estimation process sequentially to
compute all ⇣m,1, ⇣m,2, ..., ⇣m,L channels between BS and
UE. However, estimating cascaded channels for all L PREs
following this on-off sequential approach is a challenging
and time-consuming task. Following this urge, we divide our
channel gain acquisition process into two steps: a) channel
estimation on a selected small number of PREs and b) channel
prediction for the remaining PREs based on the estimated
channels.

III. DEEP NEURAL NETWORK AIDED ESTIMATION &
PREDICTION

In this section, we first describe our proposed two-step
(estimation and prediction) data-driven approach to acquire
cascaded channels of the considered IRS-aided communi-
cation system. We then illustrate the details of the two
DNN-empowered methods for both estimation and prediction
schemes separately in the following subsections.

A. Two-Step Data-Driven Approach

Fig. 2: Proposed two-step data-driven approach.

Fig. 2 illustrates our proposed two-step data-driven approach
to acquire (estimation and prediction) the cascaded channel
gain. First, we estimate the cascaded IRS channels for Q ⌧ L
number of PREs using one of the two proposed methods,
Method I and Method II. Following the estimated cascaded
channel gains of Q number of PREs, we predict the remaining
R = L � Q number of PREs. The idea of employing a two-
step data-driven approach is twofold. Firstly, the IRS panel
is usually equipped with a large number of PREs. These
PREs are closely embedded in the IRS panel, hence their

inherent signal properties are closely correlated. Secondly, it is
computationally burdensome for the transceiver to accurately
estimate the cascaded channels for each PRE, especially in
the case of a downlink communication system due to the
limited resources and energy-constrained hardware of the UE.
As such, we leverage data-driven approaches to design channel
acquisition schemes that exhibit low computational complexity
in real-time data transmission. First, we propose two data-
driven estimation schemes that can address pilot contamination
and estimate channels for a small number of PREs. Second,
another data-driven prediction scheme can learn the underlying
correlations among PREs and hence can predict channels for
the remaining large number of PREs from the estimated small
number of PREs.

B. Cascaded Channels Estimation

We propose two DNN-aided channel estimation schemes,
Method I and Method II. While Method I yields lower
computational complexity, Method II applies the successive
pilot contamination cancellation strategy to improve the per-
formance at the expense of higher complexity.

1) Method I: In this method, the input features of the neural
network (NN) model consist of R{zl} and I{zl}, where R

and I denote the real and imaginary parts of a complex
variable, respectively. The corresponding output labels of the
NN model are the cascaded channel for PRE l 2 {1, 2, · · · , L}
and transmit antenna m 2 {1, 2, · · · ,M} that shares the
same pilot sequence. The output labels are represented as
[R{⇣̂1,l}, I{⇣̂1,l}, · · · ,R{⇣̂M,l}, I{⇣̂M,l}]. The NN model is
depicted in Fig. 3.

Fig. 3: Neural Network for Method I.

2) Method II: In this approach, the concept of successive
interference cancellation (SIC) technique is implemented uti-
lizing DNN [17]. We employ the idea of the SIC decoding
technique to minimize pilot contamination using the knowl-
edge of transmit antennas that share the same pilot signal. In
this estimation method, D NN models are designed and trained
to cancel the impact of M � 1 contaminating pilot signals.
We set D = C(SM), where C represents the cardinality
of a set. As shown in Fig. 4, the first NN model takes
R{zl} and I{zl} as the input features to estimate R{⇣̂1,l}
and I{⇣̂1,l} at the output. The second NN model are fed
with the input features R{zl}�R{⇣̂1,l} and I{zl}� I{⇣̂1,l}
to generate the output R{⇣̂2,l} and I{⇣̂2,l}. Following this
sequence the Dth NN model is given R{zl}�

PD�1
d=1 R{⇣̂d,l}

and I{zl}�
PD�1

d=1 I{⇣̂d,l} as input to estimate R{⇣̂D,l} and
I{⇣̂D,l} as the output.



Fig. 4: Neural Network for Method II.

C. Cascaded Channels Prediction

Using Methods I and II first, we compute the cascaded
channels of IRS for Q number of PREs. We then feed
another fully connected feedforward NN with Q estimated
cascaded channel gain to predict the remaining channel gains
for R number of PREs. Refer to Fig. 5, the input features
and the corresponding output for the prediction operation
can be represented as R{⇣̂M,1}, I{⇣̂M,1}, · · · ,R{⇣̂M,Q},
I{⇣̂M,Q}, and R{⇣M,Q+1}, I{⇣M,Q+1}, · · · , R{⇣M,Q+R},
I{⇣M,Q+R} respectively.

Fig. 5: Neural Network for Prediction.

D. Offline Training and Online Testing (Method I & Method

II)

The NN models of Methods I and II are designed with
multiple fully connected DNN layers. The first layer is the
input layer integrated with the input features followed by G

hidden layers. Each hidden layer g 2 {1, 2, ...,G} consists
of Ng neurons. The last hidden layer G is followed by the
final output regression layer. The NN model is trained with U
epochs, where each epoch contains V batches of data collected
from the training dataset. It is worth pointing out that the
training dataset contains data collected over a wide range
of SNR. Once trained, the inference model is ready for the
online acquisition of cascaded channels while performing the
estimation and prediction tasks sequentially.

E. Computational Complexity

The computational complexity for forward and
backward propagation in the offline training phase

of Method I and Method II are computed as
O

⇣
2L

⇣
2N1 + 2mNG +

PG
g=2 Ng�1Ng

⌘
UV

⌘
and

O

⇣
2DL

⇣
2N1 + 2NG +

PG
g=2 Ng�1Ng

⌘
UV

⌘
, respectively.

On the other hand, the computational complexity in the
online testing phase belongs to only forward propagation,
hence, the complexity for Method I and Method II can be
represented as O

⇣
L
⇣
2N1 + 2mNG +

PG
g=2 Ng�1Ng

⌘⌘

and O

⇣
DL

⇣
2N1 + 2NG +

PG
g=2 Ng�1Ng

⌘⌘
, respectively.

In the sequential on-off mode of IRS, the computational
complexity of the DNN model is linearly incremental with
the increase of L for both training and testing phases, since
only one PRE is turned on at a time.

IV. SIMULATION RESULTS

In this section, we first describe the baseline schemes
and then discuss the numerical performance evaluations of
the proposed DNN-based channel acquisition scheme along
with the baseline schemes. It is worth mentioning that the
cascaded channel of the BS-IRS-UE link results in a non-
Gaussian distribution. Hence, obtaining the optimal minimum
mean square error (MMSE) scheme requires the calculation of
multidimensional integration and hence is not straightforward
to implement in practice [18].
A. Baseline Estimation Schemes

1) Least Square Estimation (LSE): We consider the con-
ventional least squares estimate (LSE) approach as one of the
baseline schemes that do not require statistical knowledge of
the channel profile. The estimated cascaded channels of the
IRS using the LSE method can be expressed as

⇣̂m,l =
zl

p
PmM

. (4)

2) Convolutional Neural Network (CNN): Convolutional
Neural Network (CNN) aided channel estimation scheme is
considered as another baseline approach. Taking into account
the size of the input features of the cascaded channel esti-
mation process, we designed and trained a one-dimensional
(1D) CNN to extract spatial correlations. The first layer of the
network consists of a sequential input layer. The five middle
layers are the core layers, where most computations and
learning occur. Each stack of middle layers consists of a one-
dimensional convolution (Conv1D) layer, batch normalization
layer, and rectified linear unit (ReLU) activation layer. The
final layer is the fully connected output layer.

B. Baseline Prediction Schemes

1) Linear Regression: In the prediction stage, we consider
machine learning (ML) incorporated linear regression as a
baseline scheme that yields low computational complexity in
predicting cascaded channels from the estimated channels.

C. Numerical Performance Comparison

We demonstrate the numerical results of the proposed
DNN-aided channel acquisition frameworks and compare their
performance with the considered baseline schemes in this sub-
section. We adopt normalized mean square error (NMSE) as



a metric to evaluate the performance of the proposed methods
in both estimation and prediction tasks. The NMSE can be
defined as NMSE = E

n
||Q�Q̂||2
||Q||2

o
. Here, E{·} represents the

statistical expectation operation. Moreover, Q 2 {sm} and
Q̂ 2 {ŝm} denote the actual and the estimated signals, re-
spectively. We set the average SNR as � = PmE{|⇣m,l|

2
}/�2

n
,

where �2
n

denotes the noise power spectral density at UE.
We leverage the MATLAB DL toolbox [19] for the dataset
generation, training, and testing to evaluate the performance
of the proposed schemes. We consider 20,000 realizations for
training and 6,000 realizations for testing for both the proposed
and baseline schemes. For all the demonstrated results, we
consider Kgm,l = Khl = 10dB, M = 8, L = 2a, a = 4,M =
D = 3,G = 3, Ng = 300, Q = 4, j = 8, U = 100, and
V = 50, unless otherwise stated to conduct the simulations.

-20 -15 -10 -5 0 5 10 15 20

SNR [dB]

10-3

10-2

10-1

N
M

S
E

Method I, training data = 5000

Method I, training data = 10000

Method I, training data = 20000

Method I, training data = 30000

Method II, training data = 5000

Method II, training data = 10000

Method II, training data = 20000

Method II, training data = 30000

Fig. 6: Training impact on estimation.

Impact of Training Dataset on Estimation: In Fig. 6, we
illustrate the impact of the number of training samples on the
NMSE across a range of SNR for both proposed Methods I and
II during the estimation process. Different configurations of
training parameters are considered by varying the cardinality
of the training datasets. It is observed that an increase in
SNR for a given training dataset decreases NMSE. Moreover,
enlarging the dataset size further reduces the NMSE at a fixed
SNR. However, the improvement in NMSE performance when
increasing the dataset cardinality from 20,000 to 30,000 is rel-
atively marginal compared to the enhancement observed when
expanding the dataset size from 5,000 to 10,000. This trend in
NMSE performance as a function of dataset size suggests that
an optimal selection of training symbols should consider the
trade-off between increased training computational complexity
and time versus performance gains.
Performance of Proposed Estimation Schemes: Fig. 7
compares the performances of the proposed cascaded channel
estimation schemes with those of the baseline schemes. A
large gap in estimation error is evident between the LSE
and the proposed methods, especially in the low SNR region.
Increasing the value of SNR decreases the difference in NMSE
between the LSE and the proposed methods. It is observed
that the NMSE performance of fully connected feed-forward
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S
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Method I-DNN

Method II-DNN

Method I-CNN

Method II-CNN

Fig. 7: Cascaded channels estimation error.

DNN is relatively better than the CNN over the entire range
of SNR. However, Method II shows lower NMSE compared
to Method I in estimating the cascaded channels at the
expense of deploying multiple NNs. Therefore, the trade-off
between the proposed methods can be optimized intelligently
while considering the application requirements, computational
resource availability, users’ demands, and cellular traffic loads.
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Fig. 8: Effect of increasing pilot contamination.

Fig. 8 illustrates the impact of the variation in the number of
pilot contamination on the NMSE for both the proposed esti-
mation methods. We see as the pilot contamination increases
the NMSE also increments while anticipating a fixed number
of transmitter antennas M = 128. Moreover, the gap in NMSE
between method I and method II increases with the increasing
number of pilot contamination.
Impact of Training Samples on Prediction: Fig. 9 shows
the influence of training samples on NMSE while predicting
the cascaded channels of the PREs. The figure shows that
the NMSE falls sharply when the number of training samples
increases to 6000. However, increasing the training samples
beyond 6000 makes the decreasing rate of the NMSE signifi-
cantly low.
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0 10 20 30 40 50 60 70

Number of Predicted PREs

10
-2

10
-1

N
M

S
E

Prediction-ML

Prediction-Method I

Prediction-Method II

Fig. 10: PREs cascaded channels prediction error.

Performance of Prediction Schemes: Fig. 10 depicts the
comparison of cascaded channels prediction error between the
proposed methods and the ML integrated linear regression as
a baseline scheme. It shows that both the proposed methods
outperform the baseline scheme in terms of NMSE noticeably.
Moreover, we observe that keeping fixed the number of PREs
estimated cascaded channels gain as input features, the pre-
diction NMSE increases slowly while predicting the cascaded
channels of the increasing number of PREs. Method II shows
lower NMSE than method I in the prediction stage as well.

V. CONCLUSION

This paper investigates the challenging problem of the
cascaded channel acquisition for IRS-aided communication
systems while addressing the detrimental effect of pilot con-
tamination. We propose a two-step twin DNN framework to
address this challenge. The proposed two methods can render
notably lower estimation error than the conventional statistical
estimation approach, especially in the low SNR region, as well
as predict the cascaded channels gain with reasonable accuracy
by learning the spatial correlation of the estimated channel of
the PREs. In future work, we will analyze customized DNN
models, especially considering the inherent structure of the

signal to provide further improved performance in both the
estimation and prediction process.
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