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Abstract—Originally invented by the military for warfighting,
drones have broken through adamant barriers established by
traditional commercial and civilian industry and are quickly be-
coming an accepted part of mainstream. In order to enable drone
technology to reach its full potential and integrate heterogeneous
drones into existing workflows, Internet of Drones (IoD) has been
proposed as a future aerial-ground communication architecture,
where drones frequently contact Zone Service Providers (ZSPs)
for up-to-date information. When many drones intend to access
data through a ZSP concurrently, service scheduling plays a
significant role in improving data accessibility. In practice,
however, the limited bandwidth and coverage range of ZSP
and the high speed of drones make the problem of service
scheduling challenging. In this paper, we propose a reinforcement
learning based service scheduling algorithm, also called RELESS,
to optimally satisfy the service requests of drones in the IoD.
In RELESS, the interaction between the ZSP and drones is
formulated as a Markov decision process (MDP) which will
be solved by the Q-learning algorithm to produce an optimal
service scheduling policy. During this process, the ZSP adopts
an ϵ-greedy exploration method to continuously fine-tune its
service scheduling policy with various system states, which is
guaranteed to converge to an optimal policy. We develop a
discrete-event driven simulation framework using OMNeT++,
implement RELESS and its counterparts, and conduct simula-
tion experiments for performance evaluation and comparison.
Numerical results demonstrate that RELESS can improve service
request satisfaction ratio, service request satisfaction latency, as
well as data size satisfaction ratio, indicating a superior service
scheduling approach in the IoD.

Index Terms—Service Scheduling, Reinforcement Learning,
Drones, Internet of Drones

I. INTRODUCTION

The global COVID-19 pandemic affects every one of us in
some way during the last two years. Even as ordinary business
shut down, critical industries and facilities such as utilities,
mass transit, telecommunications, and oil and gas production
were under great pressure to maintain regular operations
continuously. All of a sudden, drone technology became the
ultimate tool to boost efficiency and accuracy of everyday
operations to combat COVID-19. For example, drones are
being used extensively for medicine and grocery deliveries,
disinfectant spraying, temperature check, and warning citizens
to wear masks [1]. Thus, we argue that the global COVID-
19 pandemic became an inflection point for drone industry. In
addition, as stated in the ‘‘Drone Technology and Global Mar-
kets’’ report from BCC Publishing, the global drone market is
estimated to be worth approximately $55 billion in 2025, with
a compound annual growth rate (CAGR) of around 13% for
the period of 2020-2025 [2]. With the support and promotion
of other advanced technologies (e.g., Artificial Intelligence

(AI) and fifth-generation (5G) mobile communications), we
anticipate that the use of drone technology will be even more
widespread during the post-pandemic period [3].

To unlock the full potential of drones and integrate them
into existing workflows, a novel aerial-ground communication
architecture, Internet of Drones (IoD) [4], has been proposed
and attracted extensive attention from both the scientific com-
munity and industry. A great deal of research work has been
produced in the realm of IoD, beginning with the physical
layer and expanding to the application layer. In addition, in
the era of Industry 4.0, drones are widely used as flying
sensors and have secured a place in almost all kinds of
industrial ecosystems [5]. More specifically, in the IoD, a set of
stationary Zone Service Providers (ZSPs) are deployed to ad-
ministrate their designated upper airspace and provide wireless
communications from Internet infrastructure to drones. For
instance, a delivery drone can communicate with a nearby ZSP
to obtain an optimal flight trajectory [6]. For predicting the
spread of COVID-19 disease, surveillance drones can patrol
target area, observe crowds, and deliver observational data to
a nearby ZSP [7].

As the number of drones in the air gradually increases,
service scheduling plays a significant role in improving data
accessibility when many drones intend to access data through
a ZSP concurrently. In practice, however, the inherent char-
acteristics of IoD environment pose a great challenge to
service scheduling at the ZSP. First, the limited communication
range of ZSP and the high mobility of drones make the
communication contact time between the ZSP and drones
extremely short. As a result, each service request is associated
with a tight deadline to be met by the ZSP. Second, the
wireless communication bandwidth between the ZSP and
drones is constrained. Thus, when the ZSP receives service
requests from multiple drones, which service request should
be satisfied first becomes a tricky problem. Ideally, both of
the aforementioned problems can be easily solved by densely
deploying ZSPs on the ground. If that were so, we would
have to embrace a relatively high deployment, operational,
and maintenance costs. Based on the above points of view,
we argue that it would be a wise move to design a service
scheduling algorithm to resolve the challenges of IoD system
as well as improve scheduling efficiency.

In this paper, we propose the first machine learning based
service scheduling algorithm aiming to bring significant sys-
tem performance enhancement in the IoD environment. In
summary, our contribution is summarized in the following:
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• We propose a reinforcement learning based service
scheduling algorithm (RELESS) to optimally satisfy the
service requests of drones in the IoD. The basic idea
of RELESS is that the interaction between the ZSP and
drones is formulated as a Markov decision process (MDP)
which will be solved by the Q-learning algorithm to
produce an optimal service scheduling policy. During
this process, the ZSP adopts an ϵ-greedy exploration
method to continuously fine-tune its service scheduling
policy with various system states, which is guaranteed to
converge to an optimal policy [8].

• In order to satisfy the need of future extension and widen
the application range, we adopt multiple attribute decision
making theory [9] to evaluate each service request with
multiple scheduling parameters during the process of
forming the state of the system. The rationale behind
this design is that new scheduling parameters can be
conveniently included in RELESS for various system
requirements.

• We select service deadline, data size, and data popularity
as scheduling parameters and develop a discrete-event
driven simulation framework using OMNeT++ [10]. In
addition, we implement RELESS and its counterparts,
e.g., Psched [11], serve-in-random-order (SIRO), and
first-come-first-serve (FCFS), in the simulation frame-
work, conduct extensive simulation experiments, and
analyze the results for performance evaluation.

The rest of the paper is organized as follows. We review the
existing literature in Section II. We present the system model
in Section III, and then propose the scheduling algorithm in
Section IV. In Section V, we provide and analyze experimental
results. Lastly, we conclude the paper in Section VI.

II. RELATED WORK

The authors in [12] investigate the issue of charging
scheduling for flying ad hoc networks, where a limited number
of charging stations are installed to provide battery recharging
service. When drones run out of battery, they can request a
charging time slot from a nearby charging station. Then, the
charging station schedules all charging requests according to
hashgraph consensus algorithm and allocates the charging time
slot to each drone using game-theoretic approach. However,
the authors failed to adopt coefficient to control the impact of
each scheduling parameter for subjective preference. In their
design, all scheduling parameters have equal weight in the
calculation of recharge scheduling priority. In [13], a drone-
assisted data collection strategy is proposed to capture data in
wireless sensor networks, where an absorbing Markov chain
is formulated to represent the system dynamic consisting of
the residual energy of drones, the size of data queue, the
time-to-be-alive of ground sensor, and the channel condition.
In addition, the drone is equipped with an experience replay
memory which stores the training experiences of data collec-
tion schedule at each time step. However, the onboard deep
deterministic policy gradient algorithm and experience replay
memory create a huge burden for resource-constrained drones.

The authors in [14] propose a data service request schedul-
ing scheme for vehicular ad hoc networks, where fuzzy logic
is being used to predict the deadline of request according to
instantaneous vehicular network information. For each service
request, a priority index is calculated based on the information
of service type, request deadline, and vehicle status using
fuzzy logic system. Then, the road side unit (RSU) satisfies
each data service request based on the priority index value.
However, the work fails to consider that several vehicles might
request the same data during a scheduling window. Thus, in
order to conserve the limited wireless communication band-
width, the data broadcast can be postponed until the deadline
so that several data requests can be satisfied by a single broad-
cast. In [15], a cluster-enabled scheduling algorithm based on
reinforcement learning is proposed to improve the information
accessibility in vehicular networks. First, a cluster head vehicle
is chosen based on the vehicle distance, relative mobility, and
bandwidth efficiency as the most suitable data forwarder. Then,
a schedule of data transmission is created with the number of
data packets and the probability of successful transmission.
In addition, a reinforcement learning algorithm is adopted to
select auxiliary vehicles to store data in the cluster, which can
help to enhance the reliability of data transmission. However,
the major weakness is that the cluster head selection procedure
incurs non-negligible communication overhead.

The authors in [16] concentrate on the joint problem of con-
tent prefetching and transmission scheduling in RSU-enabled
vehicular networks, where the storage capacity of RSU and the
capacity of wireless channel are constrained. An integer linear
programming technique is adopted to solve the joint problem
and achieve the goal of improving content delivery. However,
the proposed transmission scheduling algorithm only considers
the data popularity, i.e., the number of vehicles is interested
in the data, which cannot be applied in the IoD environment
with the constraint of service deadline. In [11], the authors
propose a priority-based scheduling algorithm (Psched) for
the IoD environment. In Psched, the ZSP first receives the
service requests from drones at the beginning of service cycle.
Then, it allocates a weight to each pre-determined scheduling
parameter and computes the priority for each service request.
Finally, the service requests will be satisfied one by one based
on the priority value. The proposed solution in our paper has
some similarities with the work in [11] on scheduling service
requests in the IoD environment, since both consider multiple
parameters to make a scheduling decision. However, our ap-
proach in this paper provides ZSPs with artificial intelligence
to exploit an optimal service scheduling policy and maximize
overall system performance.

III. SYSTEM MODEL

The system model is shown in Fig. 1, where a set of drones
with an unique identifier are deployed and flying in the sky to
execute a task of interest (e.g., express shipping and delivery,
law enforcement and surveillance, etc.). ZSPs are connected to
the Internet through either wired Ethernet or other networking
technology. Thus, when a drone flies into an airspace which
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Fig. 1. A system model where a dash-dotted line of ellipse indicates the
communication range of ZSP and the drone service request is marked as a
dash line with an arrowhead.

is administrated by a ZSP, it can communicate with the
ZSP directly and retrieve up-to-date information by sending
a service request packet. After receiving the service requests
from drones, the ZSP intelligently selects service requests to
satisfy according to RELESS in such a way that maximizes
long-term and large rewards. We assume that ZSPs do not
have energy constraint since they are furnished with energy
harvesting modules to refill their rechargeable batteries [17],
[18]. Due to the limited coverage area (i.e., communication
range) of ZSP and the high mobility of drones, each service
request is inherently associated with a tight deadline. As a
result, the service request needs to get satisfied before the
deadline expires (i.e., the drone flies out of the coverage area of
ZSP). We also presume that drones are armed with the global
positioning system as well as inertial measurement unit to
observe their real-time position and speed data [19]. Therefore,
each drone can adequately estimate its sojourn time in the
communication range of ZSP (i.e., the time when it will fly
out of the communication range of ZSP) when it just enters
the coverage area. As a matter of course, the estimated sojourn
time is regarded as the deadline of drone’s service request. In
this paper, we do not consider the scenario where drones hover
in the air and wait for their service requests to be satisfied.

IV. THE PROPOSED ALGORITHM

First, the time is divided into a sequence of fixed-lengthed
service windows, each is denoted Wsvc. In addition, each
service window Wsvc is further divided into a submission sub-
window ωsub and a response sub-window ωrsp. As the name
suggests, during ωsub, drones can submit their service requests
to the ZSP, whereas within ωrsp, the ZSP satisfies service
requests through data broadcast. In order to notify incoming
drones of the end of ωsub, the ZSP regularly broadcasts a
beacon packet. In this paper, Wsvc, ωsub, and ωrsp are system
parameters, which can be adjusted in a fine-grained manner
to better suit drones’ needs in various scenarios. For instance,
the length of Wsvc and ωsub can be extended accordingly if
a larger drone density is observed within the coverage area
of ZSP. Moreover, if a large-sized data is being requested
by drones, a larger ωrsp can be allocated proportionately.
After entering the coverage area of ZSP, drones continuously
monitor the wireless channel for beacon packets to determine
whether ωsub is open or not. If drones are still welcome to

TABLE I
SERVICE REQUEST TABLE

Row#⊗ Data ID⊙ Data Size⊛ Data Popularity⊚ Rep. Deadline⊖

1 m12 m13 m14 m15

2 m22 m23 m24 m25

3 m32 m33 m34 m35

. . . . . . . . . . . . . . .
i mi2 mi3 mi4 mi5

. . . . . . . . . . . . . . .
rexp mrexp2 mrexp3 mrexp4 mrexp5

⊗: i represents the ith service request group, i ∈ [1, rexp]; rexp is the
number of expected service request groups.

⊙: mj2 is the identifier of requested data, j ∈ [1, rexp].
⊛: mk3 is the size of requested data, k ∈ [1, rexp].
⊚: mp4 is the popularity of requested data, p ∈ [1, rexp].
⊖: mq5 is the representative deadline of service request group, q ∈ [1, rexp].

submit service requests, they can send service request packets
to the ZSP. Otherwise, they will need to postpone their service
request submissions until next Wsvc.

Second, the service request packet, denoted by
pkt[Nid, Did, Tsoj , Tcur], consists of four components:
drone’s ID Nid, the identifier of requested data Did, the
sojourn time Tsoj , and the current timestamp Tcur. Note that
Tsoj indicates how long drone Nid can stay in the coverage
area of ZSP. Thus, with Tsoj and Tcur, the ZSP is able to
calculate the deadline of service request packet as DL[Nid,Did]

= Tcur + Tsoj , which is the time when pkt[Nid, Did] has to be
satisfied. Otherwise, pkt[Nid, Did] has to be discarded by the
ZSP. During Tsoj , we assume that each drone only submits
one service request packet to the ZSP. After ωsub finishes, the
ZSP groups all received service request packets based on the
piggybacked data identifier, where the service request packets
piggybacked with the same Did are put in the same group
denoted as SG[Did]. The rationale behind this design is that
the service requests that are interested in the same data can be
satisfied through a single data broadcast, which can save the
communication bandwidth. In order to ensure all requesting
drones can receive the data broadcast before the deadline,
the earliest deadline in the service request group SG[Did] is
chosen as the representative deadline DL⋆

[Did]
for all service

requests. In addition, the number of service requests in the
service request group SG[Did] is adopted to represent the
popularity of requested data DP[Did]. Then, the ZSP builds a
service request table as shown in Table I, which is composed
of service request group number R#, data identifier Did,
data size SZ[Did], data popularity DP[Did], and representative
deadline DL⋆

[Did]
.

It is worth mentioning that the number of drones present
within the coverage area of ZSP is changing from time to
time since drones can freely move in the airspace. Therefore,
the ZSP might receive varying number of service request
packets which can be categorized into different number of
service request groups. In order to avoid having different
sizes of service request table, we assume that during any
arbitrary Wsvc the number of expected service request groups
is rexp. In this way, the number of rows in the service request
table is set to rexp. If the actual number of service request
groups ract is larger than rexp, the ZSP randomly selects rexp
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service request groups to build service request table. And the
remaining service request groups, [ract − rexp], are put on
the waiting list so that they can be added into service request
table later. However, if ract < rexp, the values of metrics (i.e.,
data identifier, data size, data popularity, and representative
deadline) in row [ract+1, rexp] are set to null.

Third, after ωsub ends, the ZSP performs value normal-
ization over three service scheduling parameters (i.e., data
size, data popularity, and representative deadline) in Table I
according to the following min-max normalization process,

m⋄
ij =

mij −min{mj}
max{mj} −min{mj}

i ∈ [1, rexp] j ∈ [3, 5]

(1)

and

m∗
ij = m⋄

ij × αj + (1− αj).

i ∈ [1, rexp] j ∈ [3, 5]
(2)

Here, i and j indicate the row and column number in
Table I, respectively. mj denotes all values of column j,
and max{mj} and min{mj} represent the maximal and
minimal value of column j, respectively. m⋄

ij and m∗
ij are the

normalized value and subjectively adjusted value, respectively.
Here, multiplicative factor αj is adopted to adjust the impact
of service scheduling parameter in column j of Table I, where∑5

j=3 αj = 1.0. Then, according to information theory [20],
the ZSP calculates the entropy of service scheduling parameter
in column j, denoted by EPYj , as

EPYj = − 1

ln rexp

rexp∑
i=1

(
m∗

ij∑rexp

k=1 m∗
kj

·ln
m∗

ij∑rexp

k=1 m∗
kj

)
, j ∈ [3, 5],

(3)
and the entropy weight of service scheduling parameter in
column j, denoted by WTEPYj

, as

WTEPYj =
1− EPYj∑5

k=3(1− EPYk)
, j ∈ [3, 5]. (4)

With the entropy weights of all service scheduling parameters,
the ZSP calculates the weight of the ith row (i.e., the ith
service request group) WTi according to multiple attribute
decision making theory [9],

WTi = 1−
∑5

j=3(WTEPYj ·m∗
ij)∑rexp

k=1

∑5
j=3(WTEPYj ·m∗

kj)
, i ∈ [1, rexp]. (5)

Finally, the ZSP formulates the system state ST as a fix-sized
vector of the weights of service request groups, where ST =
{WT1,WT2, · · · ,WTrexp

}.
Fourth, the ZSP formulates the system dynamics into a

finite Markov Decision Process (MDP) framework, which is
a straightforward framing of the problem of learning from
interaction to achieve a goal. More explicitly, the ZSP and
drones interact at each of a sequence of service windows,
Wx

svc, x = 1, 2, 3, . . . . During the xth service window Wx
svc,

the ZSP observes the system state, STx ∈ S , and on that basis
selects an action, Ax ∈ A. S is a fix-sized vector of the weights
of service request groups during any service window, where

ST ∈ S. A is the action space and is denoted as A = {1, 2, 3,
· · · , rexp}. Therefore, during Wx

svc, if the ith service request
group associated with the weight WTi is chosen to be satisfied,
Ax = i. Shortly afterwards, the ZSP receives a numerical value
related to reward/penalty in part as a consequence of its action.
Within any service window, if the ZSP chooses to satisfy
the ith service request group SG, the obtained reward is the
number of service requests in SG. However, if a drone flies
out of the coverage area of ZSP with the unsatisfied service
request, the ZSP receives ρ penalty as a return. It is worth
mentioning that the event of unsatisfaction is disclosed in a
single service window when the drone flies out of the coverage
area of ZSP. However, the ZSP realizes that the sequence of
its past actions gives rise to this unsatisfaction event.

Fifth, the ZSP works on finding an optimal service schedul-
ing policy π∗ which will maximize the sum of the discounted
rewards it receives over the future. For finite MDPs, an optimal
policy can be defined that there is always at least one policy
that is better than or equal to all other policies. In other words,
a policy π is better than or equal to a policy π

′
if and only

if vπ(ST ) ≥ vπ′ (ST ) for all ST ∈ S , where vπ(ST ) is
the value function (i.e., the expected return) when starting in
a state ST and following a policy π thereafter. It is worth
mentioning that there may be more than one optimal policy,
but we denote all optimal policies by π∗. Moreover, π∗ shares
the same state-value function, called the optimal state-value
function v∗, which is defined as

v∗(ST )
.
= max

π
vπ(ST ). (6)

Suppose that when the ZSP is following a service scheduling
policy π, the action during Wk

svc is Ak = π(STk). In addition,
the expected immediate rewards from state STk after taking
action Ak is represented as Rk = r(STk, Ak). Therefore,
the sum of the discounted rewards the ZSP receives over the
future, denoted G, is given by

G = R1 + γR2 + γ2R3 + · · ·+ γM−1RM =

M∑
k=1

γk−1Rk, (7)

where γ is called the discount rate, 0 ≤ γ ≤ 1. The discount
rate determines the present value of future rewards, where a
reward received k service windows in the future is worth only
γk−1 times what it would be worth if it were received imme-
diately. With Rk = r(STk, Ak), we can write G alternatively
as

Gπ =

M∑
k=1

γk−1r(STk, Ak). (8)

Thus, the optimal policy π∗ can be obtained through

π∗ = argmax
π∈Θ

Gπ, (9)

where Θ denotes the set of all policies and argmax
π∈Θ

Gπ

denotes a policy π at which Gπ takes its maximal value.
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According to [8], the value function of a state STk under
a policy π satisfies the following Bellman equation,

vπ(STk) = r(STk, Ak) + γ
∑

STk+1

p(STk+1|STk, Ak)vπ(STk+1),

(10)
where p(STk+1|STk, Ak) is the probability of transition to
state STk+1 from state STk taking action Ak when following
a policy π. In order to solve Eq. (10), the information of
state transition p(STk+1|STk, Ak) is needed. However, the
formulated MDP framework is lack of the information of
state transition probabilities. Thus, Q-learning [8] becomes a
feasible method for the ZSP to find the optimal policy through
experiencing the consequences of actions without relying on
the information of state transition probabilities.

Q-learning is a model-free reinforcement learning algorithm
that seeks to learn the best action to take in a particular state.
More specifically, Q-learning estimates its optimal policy with-
out the need for any transition function from the environment.
In addition, Q-learning updates its value function based on
Bellman equation rather than estimating the value function
with a greedy policy. Suppose that Q∗(SK,A) is the optimal
Q-value function which provides a maximum return achievable
from a given state-action pair by any policy. According to [8],
Q∗(SK,A) can be defined as

Q∗(STk, Ak) = r(STk, Ak) +

γ
∑

STk+1∈ST

p(STk+1|STk, Ak)vπ(STk),
(11)

In addition, the optimal policy π∗(STk) can be obtained
through

π∗(STk) = argmax
Ak

Q∗(STk, Ak), (12)

where v∗(STk) = max
Ak

Q∗(STk, Ak). Since Q-learning

uses Temporal Differences (TD) to estimate the value of
Q∗(ST,A), the Q-value can be estimated via the following,

Q(STk, Ak) = Q(STk, Ak) + ψ ·
(
r(STk, Ak) +

γ ·max
Ak+1

(
Q(STk+1, Ak+1)−Q(STk, Ak)

))
.

(13)

Here, ψ is the learning rate, 0 < ψ ≤ 1. Finally, the optimal
Q-value function Q∗(SK,A) as well as the optimal policy
π∗(ST ) can be obtained when the Q-learning algorithm [8]
converges.

V. PERFORMANCE EVALUATION

To evaluate the performance of RELESS, we develop a
simulation framework using OMNeT++ [10]. The area of
network simulation is 800 × 800 m2, and each simulation
run lasts 5000 seconds. A typical wireless communication
standard for vehicular environments, IEEE 802.11p, is being
adopted to provide communications between drones and the
ZSP, where the communication range of drone and ZSP is set
to 250 and 200 meters, respectively. In addition, the data rate
is set to 5 Mbps. 100-200 drones are initially deployed in the
network area, where each drone follows the random waypoint

mobility model [21] and moves 25 meter/sec with a pause time
of zero. When the drone is within the communication range
of ZSP, it only submits one service request packet with a 70%
probability. The total number of data items is 50, and the size
of data item is varying between 50Kb and 5Mb. The learning
rate ψ is set to 1

x , where x indicates the xth service window.
Moreover, the discount rate γ is 0.5.

We revisit Psched [11], serve-in-random-order (SIRO), and
first-come-first-serve (FCFS), and implement them to work
in our OMNeT++ simulation framework for performance
comparison and analysis. The original idea of these three
benchmark schemes are briefly discussed in the following:

• Psched: The service request is satisfied based on the
calculated priority value.

• SIRO: The service request is answered randomly regard-
less of scheduling parameters.

• FCFS: The service request piggybacked with the earliest
timestamp is served first.

We measure the performance of RELESS, Psched, SIRO, and
FCFS in terms of service request satisfaction ratio, service
request satisfaction latency, as well as data size satisfaction
ratio by changing the number of drones.

First, we measure the service request satisfaction ratio of
RELESS, Psched, SIRO, and FCFS by changing the number
of drones in Fig. 2(a). Overall, the service request satisfaction
ratio of all abovementioned schemes decrease as the number
of drones increases in the network. An increasing number of
drones deployed in the network causes the number of drones
within the communication range of ZSP increase. Thus, more
drones can submit their service request packets to the ZSP.
Since the number of service windows is constant, the number
of satisfied service requests will decline, which results in a
decreasing service request satisfaction ratio. However, RE-
LESS still outperforms Psched, SIRO, and FCFS with regard
to service request satisfaction ratio. In RELESS, a drone flying
out of the communication range of ZSP with the unanswered
service request is considered as an undesired event which the
ZSP is trained to avoid in the future. When the ZSP is well
trained, more service request packets can be satisfied before
the deadline, thus a higher service request satisfaction ratio is
observed. Psched achieves a better service request satisfaction
ratio than SIRO and FCFS because it adopts multiple schedul-
ing parameters to satisfy the service request packets. However,
Psched is not competitive as RELESS because Psched does not
have intelligence to avoid undesired events. SIRO randomly
selects service request packets to satisfy, therefore, more
service request packets have to be discarded as the number of
drones increases. FCFS shows the worst performance because
it only considers the arrival time of service request packets to
make scheduling decisions.

Second, the service request satisfaction latency of RELESS,
Psched, SIRO, and FCFS is obtained with varying number
of drones in Fig. 2(b). At first glance, as the number of
drones increases, the service request satisfaction latency of
all four schemes increase. When there are more drones in
the network, more service request packets will also be gen-
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(a) (b) (c)

Fig. 2. The performance of service request satisfaction ratio, service request satisfaction latency, and data size satisfaction ratio against the number of drones.

erated. However, due to the constraints of communication
bandwidth, more service request packets cannot be answered
before their deadlines expire. As a result, those unsatisfied
service requests suffer the longest delay, and the overall service
request satisfaction latency increases. The most attractive point
is that RELESS shows much lower service request satisfaction
latency than Psched, SIRO, as well as FCFS. This is because
RELESS considers the deadline of service request as one of its
scheduling parameters, and it is trained to satisfy the service
requests with a shorter deadline first. Compared to SIRO
and FCFS, Psched shows promising performance in terms of
service request satisfaction latency. Since Psched considers the
deadline of service request packets when making decisions, a
lower service request satisfaction latency is maintained. The
service request satisfaction latency of SIRO and FCFS are
not attractive, because they do not consider time constraint of
service request packets during scheduling. As a result, more
drones leave the communication range of ZSP with unsatisfied
service requests, which causes the service request satisfaction
latency increase.

Third, Fig. 2(c) shows RELESS’s data size satisfaction
ratio compared with other three schemes. Here, the data size
satisfaction ratio is calculated as the total size of satisfied
data items divided by the total size of requested data items. It
is clear that RELESS delivers the best performance in terms
of data size satisfaction ratio. When the ZSP is trained to
satisfy the service request packets from drones, it considers
the size of requested data item as one scheduling parameter.
Since the service requests that ask for the larger data items
will generate more weights, as a result, those service request
packets will have more chances to be satisfied and a higher
data size satisfaction ratio is observed by RELESS.

VI. CONCLUSION

In this paper, we proposed a reinforcement learning based
service scheduling algorithm (RELESS) to optimally satisfy
the service requests of drones in the IoD. RELESS formulates
the interaction between the ZSP and drones as a Markov de-
cision process (MDP) which will be solved by the Q-learning
algorithm to produce an optimal service scheduling policy.
During this process, the ZSP adopts an ϵ-greedy exploration
method to continuously fine-tune its service scheduling policy
with various system states, which is guaranteed to converge
to an optimal policy. In addition, we developed a simulation
framework using OMNeT++ and compared RELESS with three

benchmark schemes for performance evaluation and analysis.
The experimental results show that RELESS provides better
performance than its counterparts.
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