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Abstract—As a major building block of Healthcare 4.0, wire-
less body area networks (WBANs) play an important role in
collecting patient’s real-time physical phenomena through small
wearable or implantable intelligent medical devices and commu-
nicating with remote medical experts using short-range wireless
communication techniques. However, the challenges of secur-
ing information access are partly evidenced by the difficulty in
designing secure and efficient security protocols. For example,
existing authentication and key agreement schemes have either
potential security vulnerabilities or high communication and
computation overhead. In this article, we propose a lightweight
and anonymous authentication and key agreement protocol,
also called liteAuth, for WBANs. In our approach, mutual
authentication and session key agreement are achieved using
the Tinkerbell map-based random shuffling, physical unclonable
function, one-way hash function, and bitwise exclusive OR oper-
ation. The security of liteAuth is first verified using the AVISPA
tool, and then its cyber resilience is analyzed. In addition, we
develop a real-world testbed, implement liteAuth and two exist-
ing schemes (i.e., PSLAP and HARCI), and conduct experiments
for performance evaluation and analysis. Experimental results
indicate that liteAuth can improve the performance of communi-
cation overhead and computation time as well as reduce energy
consumption, while meeting all security requirements.

Index Terms—Authentication and key agreement protocol,
lightweight and anonymous, security and privacy, wireless body
area networks (WBANs).

I. INTRODUCTION

INDUSTRY 4.0 and its major enabling technologies (i.e.,
automation and artificial intelligence) are revolutionizing

traditional manufacturing and industrial practices [1]. This is
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particularly the case in healthcare domain. Taking advantage
of Internet of Things, 5G, and artificial intelligence that drive
Industry 4.0, the healthcare ecosystem is moving toward the
era of Healthcare 4.0 [2], where various cyber and physical
systems are seamlessly integrated to create digitalized health-
care products as well as services. For example, in the age of
Healthcare 4.0, telesurgery can provide a precise diagnosis and
deliver healthcare surgical services to remote patients using a
high-speed communication system [3]. According to [4], the
size of the global healthcare market is forecasted to reach
about $12 trillion by 2022. In addition, the innovations in
wearable and implantable techniques (also known as wellness
space) are expected to radically extend the human lifespan [5].
With the current state of technology, it is envisioned in the
near future that Healthcare 4.0 will bring about a reformed
healthcare system that makes the services of early diseases
prediction and prevention available to everyone.

As a major building block of Healthcare 4.0, wireless body
area networks (WBANs) are playing an important role in
achieving the vision of ‘‘pervasive healthcare’’ that provides
healthcare for anyone, anytime, and anywhere by removing
time, locational, and any other restraints [6]. Generally speak-
ing, WBANs are a collection of wearable or implantable
medical sensors attached to or implanted in the patient body,
where real-time vital signs (i.e., blood pressure, pulse, tem-
perature, heart rhythm, etc.) are collected and sent to a nearby
controller node (i.e., smartphone) via wireless channel [7]. The
controller node then forwards the information to the cloud
server, where the data will be stored and processed for fur-
ther medical diagnosis by medical professionals. Therefore,
WBANs are seen as a silver bullet that can provide reliable
and robust health-monitoring services and help patients with
disabilities to recuperate to normal conditions.

Despite all of WBANs’ supposed benefits, the security
and privacy issues have received growing attention in social
media as well as the academic world over the past few years.
A telling example is the recent revelation that the medical
gear maker Medtronic [8] does not implement authentica-
tion or authorization in the Conexus telemetry protocol [9].
As a result, any adversary who is located within a range of
roughly 25 feet from Medtronic devices utilizing the Conexus
telemetry protocol can compromise the communication [10].
In the academic world, Hajar et al. [7] discussed the primary
threats and vulnerabilities existing in WBANs, and summarize
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state-of-the-art approaches that can provide the appropriate
security and privacy protection for WBANs. Undoubtedly, the
abovementioned facts have demonstrated the importance of
security and privacy while using WBANs.

To rebuild people’s confidence in WBANs, it is impera-
tive to develop secure communication protocols to resolve
the security and privacy issues. However, it is easier said
than done. First, the wireless communication between medical
devices and controller node opens the door for adversaries to
eavesdrop and steal private patient medical logs or personal
information. Second, due to resource constraints (i.e., limited
battery resource and computational power), traditional well-
known but energy-hungry security techniques (i.e., RSA and
AES [11]) can not be directly employed by WBANs. Third,
a long-term permanent security key can be preloaded into
medical devices and the authorized controller node can use
a common master key to communicate with medical devices.
However, the disclosure of the master key will put all medical
devices and the controller node in danger [12]. Therefore, the
lightweight security techniques with the design consideration
of balancing the tradeoff between performance and security are
worth exploring, which becomes the main focus of this article
as a matter of course. In summary, the key contributions of
this article are summarized in threefold.

1) We propose a lightweight and anonymous authentica-
tion and key agreement protocol, also called liteAuth,
for WBANs, where mutual authentication and session
key agreement are achieved using Tinkerbell map-based
random shuffling, physical unclonable function (PUF),
one-way hash function, and bitwise exclusive OR (XOR)
operation.

2) We implement liteAuth in high-level protocol specifi-
cation language (HLPSL) and verify its security using
the well-known automated validation of Internet secu-
rity protocols and applications (AVISPAs) tool [13]. In
addition, we analyze the cyber resilience of liteAuth to
show that it can defend against various WBAN-specific
security attacks.

3) We develop a real-world testbed consisting of one Dell
laptop [14] and one Latte Panda development board [15].
We also revisit prior security protocols, PSLAP [16]
and HARCI [17], implement them along with liteAuth
in Python, and deploy the programs in the testbed for
performance comparison and analysis.

We conduct extensive experiments and measure the
performance of liteAuth, PSLAP, and HARCI in terms
of communication overhead, computation time, energy con-
sumption, central processing unit (CPU) time, and CPU cycles.
Experimental results demonstrate that liteAuth can not only
achieve better performance compared to prior approaches, but
also meet all security requirements, indicating a viable and
competitive approach for ensuring security and data privacy
in WBANs. To promote the broad adoption and drive creative
advancement in the realm of security protocols within the
WBAN community, we make the program codes available to
the public at the https://github.com/congpu/liteAuth.

The remaining parts of the article is organized as follows.
We present and analyze some existing literature in Section II.

Section III gives a brief introduction to various techniques
used in this article. Section IV describes the network model,
adversary model, and security requirements. In Section V, we
present liteAuth with details. Both security verification and
security analysis are provided in Section VI. We conduct an
experimental study and present results in Section VII. We fur-
ther discuss the proposed scheme in Section VIII. Finally,
Section IX makes a summary for this article.

II. RELATED WORK

Authentication and key agreement protocols are security
mechanisms used in untrusted networks where all participants
show their legality, verify other participants’ identities, and
distribute shared secret keys among them. Over the past few
years, many authentications and key agreement protocols have
been developed for WBANs.

Kumar and Chand [18] investigated the security issues in
cloud-assisted WBANs, and design an identity-based anony-
mous authentication and key agreement scheme. Patient’s
medical and personal data are stored on a cloud server so
that the cost of computation and storage can be optimized.
In addition, a patient’s identity information is hidden from
other entities during all phases except the registration phase
when the network administrator registers leaf node, root node,
target node, and cloud servers, and computes their private
keys. Although the protocol provides several security prop-
erties, it fails to achieve perfect forward secrecy as well as
user revocation. Gupta et al. [19] proposed an anonymous
mutual authentication and key agreement protocol in WBANs.
The protocol has four phases: 1) initialization; 2) registration;
3) authentication; and 4) dynamic node update. The system
administrator generates system parameters (i.e., master key)
and registers intermediate and sensor nodes in the initializa-
tion and registration phase, respectively. In the authentication
phase, sensor node and hub node authenticate each other and
establish a session key using cryptographic operations. If nec-
essary, new sensor nodes can be added into WBANs during
the dynamic node update phase. A major drawback of the pro-
tocol is the high computation and communication overhead.
To secure data communication in the medical IoT, a mutual
authentication scheme is proposed in [20]. The authors mainly
focus on how to realize security objectives without requir-
ing a server verification table that stores users’ authentication
parameters and sensitive data.

Fotouhi et al. [21] proposed a hash-chain-based and forward
secure authentication scheme for WBANs in the healthcare
IoT. The scheme consists of four phases: 1) initialization;
2) registration; 3) authentication; and 4) password change.
The initialization phase initializes WBANs through finalizing
secret key and cryptographic hash function. In the registration
phase, sensor nodes and users register and synchronize secret
information with gateway. With the help of gateway, sensor
node, and user can authenticate each other in the authen-
tication phase. If a user needs to change the password, a
sequence of steps should be taken during the password change
phase. Kaur et al. [22] developed a mutual authentication
and session establishment protocol for tactile Internet-driven
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remote surgery setups. Taking advantage of elliptic curve
cryptography (ECC) and biometrics, secure communications
can be established between the surgeon, the robotic arm, and
the trusted authority.

Mwitende et al. [23] proposed a security protocol using
the blockchain technique for WBAN. The personal digital
assistant and blockchain node first create a secret key for
secure communication. Then, a blind signature is generated by
blockchain nodes so that the node anonymity can be guaran-
teed and the node eligibility can be verified. Hajian et al. [24]
proposed an authentication protocol for telecare medicine
information systems using hash functions and bitwise XOR

operations. In [25], an authentication and encryption protocol
is designed for WBAN, where the signal propagation char-
acteristics and butterfly algorithm are adopted to achieve the
security goals. Specifically, in order to distinguish the adver-
sary from legitimate devices, an authentication scheme relying
on signal propagation variations is designed, where the butter-
fly algorithm is adopted to generate random numbers which
represent the signal propagation variations.

In [26], a biometrics-based authentication scheme is
proposed for WBANs, where patients’ physiological parame-
ters are collected and used by wearable or implantable medical
device(s) to generate a unique identifier (or biometrics) and
authenticate with other communication entities. However, one
of the requirements for the success of biometrics-based authen-
tication schemes is the high performance and excellent stabil-
ity of physiological parameters. In addition, the physiological
features might vary significantly or even become unavailable
during the phase of physiological parameters collection, which
makes the biometrics-based authentication scheme unfeasible.
Compared to the biometrics-based authentication schemes, our
approach liteAuth adopts noise-resistant and reliable PUF to
generate the critical information for mutual authentication and
key agreement. This will guarantee that the critical information
for the security scheme can be regenerated and the security
scheme is always feasible.

Geneally speaking, our approach liteAuth has five absolute
advantages over existing security solutions in WBANs. First,
liteAuth is designed with the adoption of various lightweight
computing operations, such as PUF, chaotic system, hash
function, as well as bitwise XOR so that it can keep its com-
putational overhead to a minimum without sacrificing security
concerns. Second, liteAuth supports anonymous authentication
in WBANs, where the pseudonym, instead of a real iden-
tity, is being used for communications between entities. As
a result, the genuine identity of the wireless medical device
and control node can only be revealed by the trusted cloud
server. Third, liteAuth requires both wireless medical device
and control node to change their pseudonyms after each com-
munication session. Thus, liteAuth can defend against identity
fixation attack as well as prevent adversary from tracing wire-
less medical device’s and control node’s pattern of behavior.
Fourth, liteAuth assumes that the control node is an untrusted
entity, which differs from the opposite assumption made in
other approaches. Fifth, to the best of our knowledge, liteAuth
is the first security scheme using PUF and chaotic system-
based random shuffling to realize the mutual authentication

and session key agreement between communication entities in
WBANs.

In summary, most prior schemes primarily focus on how
to secure WBANs with various techniques. However, little
attention has been paid to the lightweight and anonymous
approach focusing on Tinkerbell map-based random shuffling,
PUF, one-way hash function, and bitwise XOR operation to
achieve mutual authentication and session key agreement in
WBANs.

III. PRELIMINARY BACKGROUND

A. Tinkerbell Map

Chaotic systems are regarded as dynamical systems, where
the underlying patterns and deterministic laws determine the
system’s random states of disorder and irregularities. Since
chaotic systems are extremely sensitive to the initial condi-
tions, extensively diverging system outcomes can be generated
with small differences in initial conditions. It is also believed
that predicting long-term system behavior is impossible in gen-
eral. Tinkerbell map [27] is one of such chaotic systems that
exhibits very rich dynamics and chaotic behaviors. Its general
form can be represented as follows:{

xn+1 = x2
n − y2

n + axn + byn

yn+1 = 2xnyn + cxn + dyn
(1)

where a, b, c, and d are system parameters, and n represents
the discrete iteration step. According to (1), the Tinkerbell map
can also be viewed as a 2-D discrete-time dynamical system
that maps a point (xn, yn) to a new point (xn+1, yn+1) in the
2-D coordinate plane. With certain system parameter values
and initial condition (x0, y0), the Tinkerbell map demonstrates
chaos, which is represented as a random sequence of points in
the coordinate plane. However, without the same initial con-
dition (x0, y0), the Tinkerbell map is unable to produce the
same chaos (i.e., the same sequence of points) even if the
same system parameter values are provided. To show perfect
chaotic behaviors, various system parameter values have been
extensively studied in the past [28]. For example, with a = 0.9,
b = −0.6, c = 2.0, and d = 0.5, any change in the initial con-
dition (x0, y0) will produce totally different chaos, which are
shown in Fig. 1.

In our approach liteAuth, a random sequence of points which
are generated by the Tinkerbell map with a specific initial
condition [PUF challenge-response pair (CRP)] are used to
randomly shuffle the communication message which is repre-
sented as a byte array. The basic idea is that the first coordinate
point in the sequence is converted into a unique integer, which
indicates the new location of the first byte of the communi-
cation message in the output array; and the second coordinate
point in the sequence is converted into another unique inte-
ger, which represents the new location of the second byte of
the communication message in the output array. The same
idea will be applied to the rest of bytes in the communication
message array. When the last byte in the communication mes-
sage array is placed at the new location in the output array,
the shuffling process is completed, and the newly generated
output array is the encrypted communication message.
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(a) (b)

(d)(c)

Fig. 1. Tinkerbell map with different initial conditions after 30 iterations,
where the same regions are highlighted with dashed boxes to show different
chaos. (a) (x0 = 0.52, y0 = 0.66). (b) (x0 = 0.52, y0 = 0.67). (c) (x0 = 0.72,
y0 = 0.57). (d) (x0 = 0.72, y0 = 0.77).

B. Physical Unclonable Function

Every integrated circuit has minor physical differences even
though they come from the same production line. This unique
characteristic of the integrated circuit has been widely adopted
to design a PUF [29], which is considered to be the unique
identity of an electronic device. Generally speaking, we can
use a chaotic one-way function to represent a PUF. The
input value of a PUF is termed ‘‘challenge,’’ while the corre-
sponding output value is termed ‘‘response.’’ The input-output
bundle is called a CRP. As the PUF is designed based on
the physical differences in the integrated circuit, the CRP is
exclusive to each PUF. In other words, if we feed the same
response into the PUF, the same challenge will be outputted.
If the same response is provided to different PUFs, totally dis-
tinct responses will be generated. For the sake of simplicity,
in this article a PUF is represented as a 256-bit hash function
R = Fpuf(C), where the challenge (C) and the response (R)
are both in the form of a string of bits [30]. In recent years,
various designs of noise-resistant and reliable PUF [31] have
been investigated, where almost 0% bit error rates in a noisy
environment with voltage fluctuations and wide temperature
ranges can be achieved. Thus, in this article, we assume that
an ideal and noise-resistant PUF is adopted.

C. One-Way Hash Function

A one-way hash function is a mathematical function that
takes a variable-length input string and converts it into a
fixed-length binary sequence which is widely known as hash
value [11]. The hash value is computationally difficult to
invert, that is, generate the original string from the hash
value. In general, an one-way hash function can be expressed
as h = H(M), where H(·) is the one-way hash function,
M = {0, 1}∗ is a set of variable length strings, and h = {0, 1}m

is a set of fixed length (saying m bits) strings.

Fig. 2. Network model.

IV. SYSTEM MODEL

A. Network and Adversary Model

As shown in Fig. 2, the network model consists of three
major entities: 1) wireless (wearable or implantable) medical
device(s); 2) control node; and 3) cloud server.

1) Cloud Server: It is considered as a trusted entity. It is
responsible for registering every wireless medical device
and control node via storing their real identity, initial
pseudonym, and initial CRP. In addition, it assists the
wireless medical device and control node to achieve
mutual authentication and establish a secure session key
before they share any critical information.

2) Wireless Medical Device: It gathers patient’s physical
phenomena and sends the information to nearby control
node via an insecure communication channel. After the
wireless medical device and control node verify each
other’s validity, they establish a secret session key for
secure communication. Each wireless medical device is
equipped with a PUF-enabled integrated circuit. In addi-
tion, the wireless medical device stores its real identity,
the challenge of initial CRP, and the initial condition of
the Tinkerbell map.

3) Control Node: It collects patient’s information from the
wireless medical device and send them to the cloud server
via an insecure communication channel. Before accessing
and communicating with the wireless medical device, the
identity of control node should be verified by the cloud
server. It is also assumed to be furnished with a PUF
chip, and store its real identity, the challenge of initial
CRP, and the initial condition of the Tinkerbell map.

We adopt the well-known adversary model specified in [11],
where two entities are assumed to be untrustworthy if they are
communicating over an insecure communication channel. An
adversary can eavesdrop on or monitor existing communica-
tion and use a replay attack to disrupt operations of legitimate
entities. In addition, an adversary may make an effort to
authenticate itself to a wireless medical device or control node
to cause strategic damage without being detected. For exam-
ple, if an adversary authenticates with the wireless medical
device (i.e., medical insulin pump) as a genuine entity, it may
alter device settings, disable device’s critical functionalities,
or even deliver a shock on command (i.e., over dosage of
insulin) to threaten patient’s life. Therefore, an authentication
and key agreement protocol are needed to protect WBANs
from potential security threats.

B. Security Requirements

According to the criteria of the secure authentication and
key agreement scheme [11], we design liteAuth to meet the
following security requirements.
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1) Mutual Authentication: Our approach shall assure that
two communicating entities are authentic and be able to
verify each other’s identity.

2) Integrity: Our approach shall assure that the source of
messages and the content of messages can be verified
by the receiving entity.

3) Anonymity: Our approach shall guarantee that the real
identity of each entity is unknown to any other enti-
ties except the trusted cloud server, even if an adversary
captured messages.

4) Session Key Agreement: Our approach shall assure that a
secret session key will be established between legitimate
communicating entities for further communication.

5) Immune Against Attacks: Our approach shall with-
stand various attacks, such as wireless medical device
impersonation attack, control node spoofing attack, etc.

V. PROPOSED AUTHENTICATION AND

KEY AGREEMENT PROTOCOL

The basic idea of liteAuth is to use PUF and Tinkerbell
map-based random shuffling to achieve mutual authentication
and session key agreement between WBAN communication
entities before sharing any critical information. First, the con-
trol node initiates the communication with the wireless medical
device to collect patient’s information by sending a message
piggybacked with a random number. After receiving the com-
munication request from the control node, the wireless medical
device replies an encrypted message piggybacked with a ran-
dom number to the control node. In order to decrypt the
encrypted message from the wireless medical device, the con-
trol node needs to authenticate with the cloud server and retrieve
the decryption information. Finally, two random numbers, one
from the control node and another from the wireless medical
device, will be used to establish a secure session key between
the control node and the wireless medical device for future
communication. A flowchart of liteAuth is shown in Fig. 3.

Considering the scenario that a wireless medical device
WMDi periodically wakes up and gathers vital signs for the
estimation of patient’s physical state. Every once in a while,
a control node CNj communicates with the wireless medical
device WMDi to collect patient’s information, and then sends
the information to the cloud server CSk for further processing
and analysis. Before sharing any patient’s information, mutual
authentication and secret session key agreement have to be
established between the wireless medical device WMDi and
control node CNj as well as between the control node CNj and
cloud server CSk, respectively. Table I lists all notations used
in this article. The detailed steps are as follows.

1) The control node CNj first computes its pseudonym as
PCNt

j
= H(CNj‖Rt

j) using its real identity CNj and the
response of CRP Rt

j. Then, it generates a random num-
ber Nt

j,i and calculates the message authentication code
(MAC) MAC0 as follows:

MAC0 = C
(

PCNt
j
‖PWMDt

i
‖Nt

j,i

)
.

Finally, it sends the message [PCNt
j
, Nt

j,i, MAC0] to
the wireless medical device WMDi to initialize the

Fig. 3. Flowchart of lightweight authentication and key agreement protocol
liteAuth.

TABLE I
NOTATIONS AND THEIR DESCRIPTIONS

communication. Here, PWMDt
i

is the pseudonym of
wireless medical device WMDi.

2) The wireless medical device WMDi first computes its
pseudonym as PWMDt

i
= H(WMDi‖Rt

i) using its real
identity WMDi and the response of CRP Rt

i. Then it
generates two random numbers, Nt

i,j and Nt
i,k. Nt

i,j and
Nt

j,i are used to establish the secret session key between
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the wireless medical device WMDi and control node
CNj, while Nt

i,j and Nt
i,k are used to update wireless

medical device WMDi’s CRP and pseudonym. Next, it
calculates the encrypted message M1 and M2 as follows:

M1 = S
(

PWMDt
i
‖PCNt

j
‖Nt

i,j

)
(Ct

i ,R
t
i)

M2 = S
(

PWMDt
i
‖CSk‖Nt

i,k

)
(Ct

i ,R
t
i)
.

It also calculates MAC MAC1 and MAC2 as

MAC1 = C
(

M1‖PWMDt
i
‖PCNt

j
‖Nt

i,j

)

MAC2 = C
(

M2‖PWMDt
i
‖CSk‖Nt

i,k

)
.

After that, it calculates a new CRP, Ct+1
i =

S(Nt
i,j‖Nt

i,k)(Ct
i ,R

t
i)

and Rt+1
i = Fpuf(C

t+1
i ). Next, it cal-

culates the encrypted message M3 and its corresponding
MAC MAC3 as follows:

M3 = S
(

PWMDt
i
‖CSk‖Rt+1

i

)
(Ct

i ,R
t
i)

MAC3 = C
(

M3‖PWMDt
i
‖CSk‖Rt+1

i

)
.

Finally, it obtains the secret session key as SKi,j =
H(Nt

i,j) ⊕ H(Nt
j,i) which will be used to communicate

with the control node CNj later, and sends the message
[PWMDt

i
, M1, MAC1, M2, MAC2, M3, MAC3] to the

control node CNj.
3) The control node CNj temporarily stores the received

message [PWMDt
i
, M1, MAC1, M2, MAC2, M3, MAC3]

for future use. It generates a random number Nt
j,k and

calculates the message M4 and MAC MAC4 as follows:

M4 = S
(

PCNt
j
‖CSk‖Nt

j,k

)
(

Ct
j ,R

t
j

)

MAC4 = C
(

M4‖PCNt
j
‖CSk‖Nt

j,k

)
.

Then, it sends the message [PCNt
j
, M4, MAC4] to the

cloud server CSk.
4) After receiving the message from the control node CNj,

the cloud server CSk first tries to locate PCNt
j

in the
database. If PCNt

j
is not found, the communication is

rejected. Otherwise, it fetches the entry [CNj, PCNt
j
,

(Ct
j , Rt

j)] for the control node CNj. Then, it retrieves
Nt′

j,k from M4 through S−1(M4), which is the reverse
process of shuffling with the CRP (Ct

j , Rt
j) as the ini-

tial condition. With Nt′
j,k, it can calculate MAC′

4 =
C(M4‖PCNt

j
‖CSk‖Nt′

j,k) and check it with the received

MAC4. If MAC′
4 = MAC4, the message verification suc-

ceeds. Otherwise, it discards the message and terminates
the communication. Next, it generates a random number
Nt

k,j, and calculates the encrypted message M5 and its
MAC MAC5 as follows:

M5 = S
(

CSk‖PCNt
j
‖Nt′

j,k‖Nt
k,j

)
(

Ct
j ,R

t
j

)

MAC5 = C
(

M5‖CSk‖PCNt
j
‖Nt

k,j

)
.

Finally, it sends the message [CSk, M5, MAC5] to the
control node CNj.

5) The control node CNj first retrieves Nt
k,j

′ from M5

through S−1(M5) and calculates MAC′
5 as follows:

MAC′
5 = C

(
M5‖CSk‖PCNt

j
‖Nt′

k,j

)
.

If MAC′
5 = MAC5, the message verification succeeds.

Otherwise, it discards the message. Then, it generates
a random number Nt+1

j,k and computes its new CRP as
follows:

Ct+1
j = S

(
Nt′

k,j‖Nt+1
j,k

)
(

Ct
j ,R

t
j

)

Rt+1
j = Fpuf(C

t+1
j ).

After that, it calculates the following:

M6 = S
(

PCNt
j
‖CSk‖Nt′

k,j‖Nt+1
j,k

)
(

Ct
j ,R

t
j

)

M7 = S
(

PCNt
j
‖CSk‖Nt′

k,j‖Nt+1
j,k ‖Rt+1

j

)
(

Ct
j ,R

t
j

)

MAC67 = C
(

M6‖M7‖PCNt
j
‖CSk‖Nt+1

j,k ‖Rt+1
j

)
.

Finally, it sends the message [PCNt
j
, M6, M7, MAC67] to

the cloud server CSk, and calculates the secret session
key to be used for the communication with the cloud
server CSk as follows:

SKj,k = H
(

Nt+1
j,k

)
⊕ H

(
Nt′

k,j

)
.

It also sends the previously received message [PWMDt
i
,

M1, MAC1, M2, MAC2, M3, MAC3] to the cloud server
CSk for the decoding of random number Nt

i,j and Nt
i,k.

6) The cloud server CSk first retrieves Nt+1
j,k

′ and Rt+1
j

′ from
M6 and M7 through S−1(M6) and S−1(M7), respectively.
Then, it calculates MAC′

67 as follows:

MAC′
67 = C

(
M6‖M7‖PCNt

j
‖CSk‖Nt+1′

j,k ‖Rt+1′
j

)
.

If MAC′
67 = MAC67, the message verification succeeds.

Otherwise, it discards the message. Next, it calculates
the secret session key for the communication with the
control node CNj as follows:

SKj,k = H
(

Nt
k,j

)
⊕ H

(
Nt+1′

j,k

)
.

After that, it computes control node CNj’s new CRP
challenge Ct+1

j and new pseudonym PCNt+1
j

Ct+1
j = S

(
Nt

k,j‖Nt+1′
j,k

)
(

Ct
j ,R

t
j

)

PCNt+1
j

= H
(

CNj‖Rt+1′
j

)

and then updates the entry [CNj, PCNt+1
j

, (Ct+1
j , Rt+1

j
′)]

in the database. Then, it retrieves Nt
i,j

′, Nt
i,k

′, and Rt+1
i

′
from M1, M2, and M3 through S−1(M1), S−1(M2),
and S−1(M3), respectively. After verifying with MAC1,
MAC2, and MAC3, it computes wireless medical device
WMDi’s new CRP challenge Ct+1

i and new pseudonym
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PWMDt+1
i

, and then updates the entry [WMDi, PWMDt+1
i

,

(Ct+1
i , Rt+1

i
′)] in the database. Finally, it shares the ran-

dom number Nt
i,j

′ with the control node CNj by sending
the message [CSk, M8, MAC8] to the control node CNj.

7) The control node CNj first retrieves Nt
i,j

′′
from M8

through S−1(M8), and calculates MAC′
8 = C(M8 ‖ CSk

‖ PCNt
j
‖ Nt

i,j
′′
) and check it with the received MAC8. If

MAC′
8 = MAC8, the message verification succeeds and it

calculates the secret session key for the communication
with the wireless medical device WMDi as follows:

SKi,j = H
(

Nt
j,i

)
⊕ H

(
Nt

′′
i,j

)
.

By this time, mutual authentication and secret session key
establishment have been completed for the communication
between the wireless medical device WMDi and control node
CNj, and between the control node CNj and cloud server CSk,
respectively. The above process is shown in Fig. 4.

VI. SECURITY VERIFICATION AND ANALYSIS

A. Security Verification Using AVISPA

In order to verify whether liteAuth can defend against
man-in-the-middle attack and replay attack, we evaluate the
security performance of liteAuth using the AVISPAs tool [13].
AVISPA is a push-button tool that integrates various back-
ends. And, each back-end is implemented using advanced
automatic analysis techniques. In AVISPA, security protocols
and their properties can be specified as a security problem
using HLPSL [13]. HLPSL is a role-based and modular pro-
gramming language, and provides a variety of constructs,
such as data structures, control flow, intruder models, cryp-
tographic primitives, etc. The detailed description of AVISPA
and the reference manual of HLPSL can be found in [13].
We implement liteAuth in HLPSL, where there are three
basic roles: 1) wireless medical device; 2) control node; and
3) cloud server. In addition to these three basic roles, the
other four mandatory roles, such as session, goal, environ-
ment, and intruder roles, are also implemented. We select
constraint-logic-based attack searcher (CL-AtSe) and on-the-
fly model-checker (OFMC) back-ends to evaluate the security
performance of liteAuth. Using CL-AtSe, the security proto-
col specification can be translated into a set of constraints
which are used to discover potential attacks on the proto-
cols. OFMC is widely used for detecting attacks as well as
proving the correctness of protocol for a bounded number of
sessions. Finally, we set up a complete and fully functional
SPAN + AVISPA [32] on Ubuntu 10.04 which is running
in the Virtual Box [33] on a Dell Inspiron 15 Plus lap-
top [14]. The results of security verification are shown in
Fig. 5. As we can see that liteAuth is secure against replay
attack and man-in-the-middle attack. The HLPSL security ver-
ification program of CL-AtSe and OFMC can be found at the
https://github.com/congpu/liteAuth.

B. Security Analysis

This section exhibits how liteAuth satisfies the required
security requirements and defends against control node capture

Fig. 4. Lightweight authentication and key agreement protocol liteAuth.

attack, wireless medical device impersonation attack, message
modification attack, and cloud server spoofing attack.

Mutual Authentication: liteAuth can achieve mutual authen-
tication between communication entities in WBANs. This is
because the cloud server will verify the identity of the wireless
medical device and control node using their real identity, initial
pseudonym, and initial CRP. Therefore, liteAuth can achieve
mutual authentication.

Integrity: liteAuth can achieve integrity so that the source of
messages and the content of messages can be verified by the
receiving entity. This is because each communication mes-
sage is encrypted using the proposed PUF and Tinkerbell
map-based random shuffling scheme. In addition, an MAC
is also generated using the one-way hash function for each
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Fig. 5. Results of security verification using CL-AtSe and OFMC back-ends
in AVISPA.

encrypted communication message. Therefore, liteAuth can
achieve integrity.

Anonymity: liteAuth can support anonymous communica-
tion in WBANs. This is because the real identity of wireless
medical device and control node is not transmitted directly
in plaintext, but in the pseudonym format. In addition, the
pseudonym of the wireless medical device and control node
will be updated after each communication session. Therefore,
liteAuth can achieve anonymity.

Session Key Agreement: liteAuth can achieve session key
agreement between communication entities in WBANs. This
is because the control server will assist wireless medical device
and control node to obtain the unique random numbers so that
they can compute the secure session key and use it for future
communications. Therefore, liteAuth can achieve session key
agreement.

Control Node Capture Attack: We assume that an adversary
has successfully captured a control node CNj who is commu-
nicating with the cloud server CSk using session key SKj,k.
Through physical memory disclosure attacks, the adversary
can retrieve stored information, such as control node’s real
identity CNj and session key SKj,k. As a result, the current
communication session between the control node CNj and
cloud server CSk would be compromised by the adversary
with the obtained session key SKj,k. In order to compromise
future communications with the cloud server CSk, the adver-
sary has to obtain the valid CRP (Ct+1

j , Rt+1
j ) from the control

node CNj. This is because a new session key (i.e., requiring
new random numbers and random shuffling with new CRP)
will be generated for each communication session. Thus, the
adversary may try to probe or alter the integrated circuit of
control node CNj to retrieve CRP (Ct+1

j , Rt+1
j ). However, the

adversary can only obtain the CRP challenge Ct+1
j , since the

CRP response Rt+1
j is dynamically calculated via Fpuf(C

t+1
j ).

In addition, this probing or alteration attempt will inevitably
change integrated circuit’s physical characteristics, and finally
destroy the PUF. Thus, the adversary cannot obtain the valid
CRP (Ct+1

j , Rt+1
j ) to compromise future communications. Last

but not least, since each control node will use a different secret
session key to communicate with the cloud server CSk, the
communication sessions between other noncaptured control

nodes and the cloud server CSk are still secure. In summary,
liteAuth is secure against control node capture attack.

Control Node Impersonation Attack: We assume that an
adversary tries to masquerade as a legitimate control node
CNj to communicate with the cloud server CSk for malicious
purposes. First, the adversary has to send an authentication
request, [PCNt

j
, M4, MAC4], to the cloud server CSk. The

adversary can easily generate a random number Nt
j,k. However,

it cannot shuffle and calculate valid M4 which can be correctly
decoded by the cloud server CSk. This is because the adversary
does not have the valid CRP (Ct

j , Rt
j) which is stored in the

cloud server CSk’s database. Thus, the authentication request
will be rejected by the cloud server CSk and the adversary can-
not establish valid communication with the cloud server CSk

by impersonating a legitimate control node CNj. Thus, liteAuth
can defend against control node impersonation attack.

Message Modification Attack: We assume that an adversary
captures and modifies the message, either M1, M2, M3, M4,
or M5, transmitting between a wireless medical device WMDi

and a control node CNj, or between a control node CNj and
a cloud server CSk. Since both the control node CNj and
cloud server CSk will verify the received message by checking

the piggybacked MAC, i.e., MAC4
?= MAC′

4, they can easily
detect any modification of messages. As a result, liteAuth is
immune against message modification attack.

Cloud Server Spoofing Attack: We assume that an adversary
already captured the message [PIDt

j, M4, MAC4] and attempts
to imitate a legitimate cloud server CSk to communicate with
a control node CNj. Since the adversary does not have the
valid CRP (Ct

j , Rt
j), thus, it cannot retrieve the random num-

ber Nt
j,k piggybacked in M4 correctly. The adversary can make

up a random number to generate the message [M5, MAC5].
However, when the control node CNj receives the message
[M5, MAC5], it can easily detect the misbehavior through
checking whether MAC5 equals to MAC′

5 and reject the fol-
lowing communication. Finally, liteAuth is resilient against
cloud server spoofing attack.

VII. PERFORMANCE EVALUATION

A. Experimental Testbed and Benchmark Schemes

For the experimental study, we build a real-world testbed
which consists of one Dell Inspiron 15 Plus laptop [14] and
one Latte Panda development board [15]. The Latte Panda
development board is equipped with a power bank which can
supply energy for hours. With regard to testbed specifications,
the Dell Inspiron 15 Plus laptop is running a 64-bit Windows
10 Home operating system, and its CPU is the 10th Generation
Intel Core i7-10750H, 12-MB Cache, up to 5.0 GHz. The Latte
Panda development board comes preinstalled with a full ver-
sion of Windows 10 Home operating system, and has Intel
Cherry Trail Z8350 Quad-Core processor, 2M cache, up to
1.92 GHz, and 4-GB random-access memory (RAM). The
snapshot of a testbed is shown in Fig. 6, where the laptop is
used to simulate the cloud server, and the Latte Panda devel-
opment board is used to mimic the wireless medical device
and the control node, respectively. We implement liteAuth and
two benchmark schemes in Python, and deploy the programs

Authorized licensed use limited to: Oklahoma State University. Downloaded on October 24,2022 at 17:49:55 UTC from IEEE Xplore.  Restrictions apply. 



21144 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 21, 1 NOVEMBER 2022

Fig. 6. Real-world testbed with one Dell Inspiron 15 Plus laptop and one
Latte Panda development board.

in the LiClipse environment [34] which is set up in the Latte
Panda development board as well as the laptop.

According to [30], we implement the PUF as a 256-bit hash
function [35]. In addition, the random shuffling function is
implemented as follows. First, the to-be-shuffled message is
represented as an array. Second, the CRP pair (Ct

i , Rt
i) is used

as the initial condition of the Tinkerbell map (1) to generate
a sequence of points. Third, starting from the first point in
the sequence, the coordinates of a point are converted into a
unique integer, indicating the new location where the first ele-
ment of array is to be put in the output array. Now considering
the array element from the second to the last, the abovemen-
tioned process is repeated till the last array element is shuffled.
Finally, the output array contains the shuffled message. Please
note that the random shuffling function is executed differently
in every communication session. This is because the wireless
medical device, control node, and cloud server will compute a
new CRP pair during the process of mutual authentication and
session key establishment. Since the CRP pair is used as the
initial condition of the Tinkerbell map and a minor change of
the initial condition in the Tinkerbell map will cause the gen-
eration of distinct sequence of points (see more details about
Tinkerbell map’s features in Section III), the random shuffling
operation is performed differently in every communication
session.

We revisit prior security protocols, PSLAP [16] and
HARCI [17], and implement them to work in the testbed
for performance comparison and analysis. The original idea
of these two benchmark schemes is briefly discussed in the
following.

1) PSLAP [16]: In PSLAP, there are three phases: a) ini-
tialization; b) registration; and c) authentication. In the
initialization phase, the sensor node chooses a master
key and stores it in the hub server. During the regis-
tration phase, the sensor node, access point, and hub
server join the network, register at the server adminis-
trator, and get their identities and critical information
via a secure channel. In the authentication process, the
sensor node and hub server validate each other’s iden-
tity through the access point, and then achieve mutual
authentication as well as session key agreement. Finally,
they can communicate with each other securely.

2) HARCI [17]: In HARCI, the wireless sink node first
authenticates itself with the cloud healthcare server and
establishes a corresponding session key. With the secure

TABLE II
COMPARISON OF COMMUNICATION OVERHEAD

session key, the wireless sink node can communicate
with the cloud healthcare server via a secure channel
to request the patient node’s CRP. Then, the wireless
sink node communicates with the patient node to achieve
a two-way authentication and a session key agreement.
After that, the patient node sends its data to the wireless
sink node through a secure channel. Finally, the wireless
sink node and patient node generate their new CRPs and
share them with the cloud healthcare server.

We measure the performance of liteAuth, PSLAP, and HARCI
in terms of communication overhead, computation time,
energy consumption, CPU time, and CPU cycles.

1) Communication Overhead: Communication overhead is
measured as the number of exchanged messages and
energy consumption of communication in the network.

2) Computation Time: Computation time is measured as the
length of time spent performing all computations in the
algorithm.

3) Energy Consumption: Energy consumption is measured
as the amount of electronic power consumed during the
process of the running algorithm.

4) CPU Time: CPU time is the amount of time for which
the CPU is used for processing instructions of the
algorithm.

5) CPU Cycles: CPU cycles is the number of clock cycles
which is measured as the number of electronic pulses
during running the algorithm.

B. Experimental Results and Analysis

First, we measure the communication overhead in terms of
the number of exchanged messages and energy consumption
of communication in Table II. We directly count the number
of exchanged messages for liteAuth, PSLAP, and HARCI. The
energy consumption of communication is calculated based on
the number of sent and received messages [36]. To mutually
authenticate sensor node and hub server, PSLAP requires four
messages to be exchanged among sensor node, access point,
and hub server. To be specific, the sensor node first sends
an authentication request message to the access point. Then,
the access point adds its identity in the message and forwards
the message to the hub server. After the hub server verifies
the identity of sensor node, it replies an authentication confir-
mation message through the access point to the sensor node.
Finally, the sensor node and hub server mutually authenticate
each other and establish a session key for further commu-
nication. Please note that the sensor node and hub server
do not verify the identity of the access point before sending
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(a) (b)

Fig. 7. Comparison of computation time and energy consumption.

any information in PSLAP. In other words, the access point
is a fully trusted entity that relays messages between sensor
node and hub server. However, this is an unrealistic assump-
tion in the current cyber threat environment. If the sensor
node and hub server first verified the identity of access point
before sharing any information, four more messages could be
expected in PSLAP. In HARCI, the patient node initiates the
authentication process by sending a message to wireless sink
node. Then, the wireless sink node and cloud healthcare server
authenticate each other and establish a session key through
exchanging three messages. After that, the cloud healthcare
server sends the CRP pair of the patient node to the wire-
less sink node via a secure channel. Next, the patient node
and cloud healthcare server exchange two messages for the
establishment of session key. Finally, the wireless sink node
sends a message to cloud healthcare server to update patient
node’s CRP pair. In liteAuth, as shown in Fig. 4, only seven
messages are required to achieve mutual authentication and
secure session key agreement between wireless medical device
and control node, and between control node and cloud server.
In addition, the energy consumption of communication for
liteAuth, PSLAP, and HARCI is 7.88×10−4, 4.50×10−4, and
9.01×10−4 J, respectively. It seems that PSLAP has a lower
energy consumption than our approach liteAuth according to
the results presented in Table II. However, we argue that this
amount of conserved energy is achieved by sacrificing security
in PSLAP.

Second, we measure the computation time of liteAuth,
PSLAP, and HARCI and present the results in Fig. 7(a). It
is clear that the lowest computation time is achieved by our
scheme liteAuth compared to PSLAP and HARCI. In liteAuth,
lightweight cryptographic operations, e.g., one-way hash func-
tion, Tinkerbell map-based random shuffling, and bitwise XOR

operation, are adopted to achieve mutual authentication and
session key agreement among entities. Those lightweight oper-
ations can be performed quickly, thus, a lower computation
time is obtained by liteAuth. In PSLAP, a one-way hash func-
tion and bitwise XOR operation are also employed. However,
PSLAP repeatedly executes hash function and bitwise XOR

operation, as a result, a longer computation time is measured.
For example, the hash function and bitwise XOR operation
are executed 10 and 14 times in PSLAP, respectively. HARCI
delivers the highest computation time. In HARCI, the patient
node and wireless sink node perform a mutually agreed-upon
public key expansion on the response generated from the PUF.
In addition, the key expansion function is also used to generate
multiple subkeys to be used in HARCI. As a result, a higher

TABLE III
COMPARISON OF CPU TIME AND CPU CYCLES

computation time is obtained by HARCI, compared to that of
liteAuth and PSLAP.

Third, we measure the energy consumption of algorithm
execution for liteAuth, PSLAP, and HARCI in Fig. 7(b).
Overall, as the number of algorithm executions increases, the
energy consumption of three schemes increase linearly. This
is because the same operations are executed more times, as
a result, more energy is consumed by the algorithm. Clearly,
the highest energy consumption belongs to HARCI since the
heavyweight operation (i.e., key expansion operation) is being
used repeatedly in HARCI. Both liteAuth and PSLAP consume
less amount of energy as the number of algorithm execu-
tions increases. However, our scheme liteAuth still outperforms
PSLAP. In liteAuth, mutual authentication and session key
agreement are achieved by executing lightweight operations,
thus, lower energy consumption is obtained.

Fourth, we obtain the CPU time and CPU cycles of liteAuth,
PSLAP, and HARCI, and the results are presented in Table III.
As opposed to computation time, CPU time does not include
waiting for input/output (I/O) operations or entering low-
power (idle) mode. For the total of 104 algorithm executions,
the CPU time of liteAuth, PSLAP, and HARCI is 62015.63,
1740296.88, and 5231453.13 ms, respectively. As expected,
our scheme liteAuth has the lowest CPU time. Regarding
CPU cycles, 8.93×1010, 2.51×1012, and 7.53×1012 are mea-
sured for liteAuth, PSLAP, and HARCI, respectively. It is
clearly shown that our scheme liteAuth outperforms PSLAP
and HARCI.

VIII. DISCUSSION

In a temperature-fluctuating and/or boisterous environment,
the challenge-specific output of PUF, which is the response,
becomes very unstable and tiny difference in the responses
can be expected even though the identical challenge is fed into
the same PUF. In other words, PUFs are widely believed to be
nonnoise-resistant [37]. Therefore, the security schemes which
are designed based on the unique output of PUF might not be
able to reproduce the exact same critical information [38].
Thus, in this article, an ideal and noise-resistant PUF is
assumed to be equipped with the control node and wireless
medical device.

As a future work, we plan to resolve this important issue
through designing and developing a fuzzy extractor and an
error-correcting technique. First, we will design a response
generation function which will produce a tuple consisting of
the PUF response and a helper string. Here, the helper string
will be fed into the PUF along with the original PUF challenge
to reproduce the PUF response. In addition, we will design a
response restore function, where the same PUF response can
be reproduced with the value of helper string, error correcting
code, as well as the original PUF challenge.
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IX. CONCLUSION

In this article, we proposed a lightweight and anony-
mous authentication and key agreement protocol (liteAuth)
for WBANs, where mutual authentication and session key
agreement are achieved using the Tinkerbell map-based ran-
dom shuffling, PUF, one-way hash function, and bitwise XOR

operation. In liteAuth, the wireless medical device and con-
trol node first authenticate each other and establish a session
key with the assistance of a cloud server, and then com-
municate through a secure channel. We also verified the
security of liteAuth using the AVISPA tool and provided a
security analysis of liteAuth. Our security verification and anal-
ysis demonstrated that liteAuth is a secure protocol that can
defend against many well-known security attacks. In addi-
tion, we developed a real-world testbed, implemented liteAuth
and other benchmark schemes, and conducted experiments
for performance evaluation and comparison. Experimental
results showed that liteAuth has better performance in terms
of communication overhead, computation time, energy con-
sumption, CPU time, and CPU cycles, which indicates liteAuth
is a viable and competitive approach for ensuring secu-
rity and data privacy in WBANs. In the future, we plan
to integrate liteAuth with the blockchain technique and
develop a secure data collection and storage mechanism for
WBANs, where the cloud server will pack the collected
data into blocks and compete to add its blocks into the
blockchain.
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