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Abstract—Thanks to rapid advancements in microprocessors,
battery technologies, and lightweight materials, unmanned aerial
vehicles (UAVs), commonly known as drones, have received signif-
icant interest in the past few years. As drone-related commercial
and civilian applications are flourishing, Internet-of-Drones (IoD)
is moving into the fast lane and quickly becoming a highly
anticipated network paradigm, where drones and Zone Service
Providers (ZSPs) coordinate knowledge sharing in a reliable,
accurate, and efficient way. However, for the sake of both strategic
and financial value to business and mission critical applications,
it is of vital importance to address both data security and
privacy preservation issues brought by drones’ inherent resource
constraints and wide-open wireless medium. In this paper, we
propose a secure data collection and storage mechanism, also
called SecureIoD, for the IoD environment. In SecureIoD, drones
and ZSPs first mutually authenticate each other and establish
a secure session key before sharing any sensitive data via an
insecure wireless channel. Then, ZSPs pack the collected data
into blocks and compete to add their blocks into the blockchain.
We also propose a joint Proof-of-Work (PoW) and Proof-of-
Stake (PoS) consensus mechanism to select the miner ZSP, where
the more transactions are in the block, the easier a ZSP can
solve the cryptographic puzzle. We present security verification
and analysis to show that SecureIoD can resist various security
attacks. Finally, we develop a real-world testbed, implement
SecureIoD and existing SDDM and BACSIoD schemes, and carry
out extensive simulation experiments for performance evaluation
and analysis. Experimental results reveal that not only does
SecureIoD have lower computation cost, energy consumption,
miner selection time, and communication overhead, but also offer
better security features and capabilities.

Index Terms—Drone, Internet of Drones, Data Security, Au-
thentication and Key Agreement, Data Storage, Blockchain

I. INTRODUCTION

Drones, officially known as unmanned aerial vehicles

(UAVs), have attracted considerable attention for various appli-

cations such as disaster and emergency response, infrastructure

inspection, and smart cities during the recent years [1]. For

example, a 2.8 mile 10 minutes drone trip transported a kidney

for transplant in May of 2019 in Baltimore (Maryland, U.S.)

[2], where the drone helped to reduce delivery time signifi-

cantly and avoid human contact during organ transportation.

The size of global commercial drone market is estimated

to be USD 35 billion by 2026. In the U.S., the economic

outlook for drone technology is also escalating alongside the

rise of drone industry, where the commercial drone market is

expected to be valued at USD 5 billion by 2025 [3]. From a

military innovation, to an exciting hobby, to a technology that

is transforming commercial industries, future opportunities in

the emerging technology field of drones are limitless [4].

In order to increase maneuverability while flying and reduce

weight, drones are made of different light composite materials

such as carbon fiber-reinforced composites and thermoplastics

[5]. In addition, drones are usually equipped with a variety

of additional equipment, including wireless communication

device, global positioning system (GPS), navigation system,

and various sensors. Thus, drones are viewed as an emerging

form of new Internet of Things (IoT) devices, flying in the

sky with full network connectivity capabilities [6]. Several

attempts have been made to integrate drones into IoT to

form an innovative communication paradigm called Internet

of Drones (IoD), which aims to smoothly connect a plethora

of drones with the Internet [7]. In the IoD, airspace is

considered as shared resource made available to all drones,

and is further partitioned into predetermined zones. Adjacent

zones are reachable from each other through incoming and

outgoing zone gates which belong to two adjacent zones.

Each zone is under the administration of one or multiple Zone

Service Providers (ZSPs) which act as Internet access points

and provide/collect up-to-date information to/from drones. For

example, surveillance drones can patrol target area, observe

crowds, and deliver observational data to a nearby ZSP for

predicting the spread of COVID-19 disease [8].

In a variety of IoD applications, starting from military

setting (e.g., border security and surveillance [9]) to civil-

ian scenario (e.g., enforcing stay-at-home order during the

COVID-19 pandemic [10]), massive volume of highly critical

data are collected and transmitted over physical networks to

data centers for further processing and storage. This process

might cause many data security and privacy challenges for

both individuals and enterprises [11]. Moreover, drones are

resource-constrained devices and considered to be defenseless

to security attacks. An adversary can deliberately target either

onboard physical elements of drones or insecure wireless

channel [12]. Unquestionably, investigating potential security

and privacy challenges in the IoD environment and designing

the state-of-the-art data collection and storage mechanisms

are urgent affairs to ensure sustainable development of IoD

industry.

Drones and ZSPs in the IoD environment communicate
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over insecure wireless channel, thus they should mutually

authenticate each other to verify the genuine identity before

sharing any sensitive and critical information. The traditional

cryptographic mechanisms (e.g., RSA and AES [13]) could be

adopted to meet fundamental security requirements such as au-

thentication, session key agreement, and privacy preservation.

Unfortunately, those heavyweight cryptographic mechanisms

demand long computation time and consume vast amount of

energy [14], [15]. Thus, lightweight security protocols are the

only solution to protect the IoD environment. In addition,

an adversary might physically capture a drone and attempt

to extract credentials stored in the memory through memory

disclosure attacks [16]. To defend against both software-

based and physical memory disclosure attacks, drones should

have tamper-resistant module to safeguard information stored

in the electronic circuitry. Last but not least, in the tradi-

tional centralized storage management systems, the centralized

server is responsible for storing and processing all collected

(sensitive) data. As drones need to receive/send data and per-

form decision-making promptly without time delay, the strict

quality-of-service (QoS) requirements cannot be guaranteed

by the centralized system. Moreover, a centralized system can

incur significant administrative costs and has other limitations

such as single point of failure. Consequently, it is necessary

to develop a decentralized reliable, consistent, and secure data

storage mechanism in the IoD environment.

In this paper, we propose a security mechanism for the IoD

environment, and analyze and measure their security resiliency

and performance trade-off through security verification and

analysis as well as experimental study. The major contribution

of this paper is summarized in fourfold:

• We propose a secure data collection and storage mech-

anism (SecureIoD) for the IoD environment. The basic

idea of SecureIoD is that drones and ZSPs first mutually

authenticate each other and establish a secure session key

based on physical unclonable function and Henon map

before sharing any sensitive data via insecure wireless

channel. Then, ZSPs pack the collected data into blocks

and compete to add their blocks into the blockchain.

• We propose a joint Proof-of-Work (PoW) and Proof-of-

Stake (PoS) consensus mechanism to select the miner

ZSP in the IoD environment, where the more transac-

tions are in the block, the easier a ZSP can solve the

cryptographic puzzle. In this way, the block containing

more transactions can be added in the blockchain earlier,

as it affects the whole ledger significantly.

• We conduct security verification of SecureIoD using the

security protocol verification tool such as AVISPA [17]

and Scyther [18], and present a security analysis of

SecureIoD. Our security verification and analysis results

prove that SecureIoD is resilient and immune to various

security attacks.

• We develop a real-world testbed which is composed of

one HP ENVY Notebook laptop [19] and one Latte Panda

development board [20] for performance evaluation. We

also revisit prior approaches, SDDM [21] and BACSIoD

[22], and modify them to work in the real-world testbed

for performance comparison and analysis.

We conduct extensive simulation experiments and measure the

performance of SecureIoD, SDDM, and BACSIoD in terms

of running time, CPU time, the number of clock cycles, en-

ergy consumption, and communication cost. Simulation results

demonstrate that SecureIoD can achieve better performance

compared to prior approaches, indicating a viable and compet-

itive approach for ensuring secure data collection and storage

in the IoD environment. To drive creative advancement in the

realm of data collection and storage within the IoD community,

we open source1 at the https://github.com/congpu/SecureIoD.

The rest of the paper is organized as follows. Existing

literature and recent studies are provided and analyzed in

Section II. Section III provides a brief introduction to physical

unclonable function and Henon map. Section IV describes

network and adversary models. The proposed secure data

collection and storage mechanism is presented in Section V.

The security verification followed by a security analysis are

provided in Section VI. Section VII presents the experimental

results. Finally, we conclude the paper in Section VIII.

II. RELATED WORK

In [22], the authors propose a blockchain-based access con-

trol mechanism for the IoD environment, where the certificates

of drones and ground station server are issued by the trusted

control room. The proposed mechanism first achieves mutual

authentication and key establishment between communication

entities in the IoD environment based on elliptic curve cryptog-

raphy, elliptic curve digital signature, and cryptographic one-

way hash function. Then, the ground station server forms the

accessed data into various transactions which will be placed

in a block. Finally, the block is verified and added in the

blockchain by the peer-to-peer cloud server network with

the help of Ripple Protocol Consensus Algorithm (RPCA)

[23]. The proposed mechanism provides better security and

more functionality attributes compared to other approaches.

However, the authors also observe a significant increase in

both communication cost and computation cost because of

the adoption of heavyweight cryptographic techniques. The

authors in [24] propose a blockchain-based security mecha-

nism to ensure secure transfer of information among drones

in cyber-physical systems. The proposed security mechanism

consists of three phases: registration, verification, and transac-

tion. To select the miner node, a deep learning-based Boltz-

mann machine using features such as drones’ computational

resources, available battery power, and flight time is adopted.

Even though the authors use security analysis and experimental

evaluation (i.e., computation time and communication cost) to

show that the proposed mechanism can provide data integrity

and privacy for the IoD ecosystem, it is undeniable that a deep

learning technique can result in excessive energy consumption

in resource-constrained drones.

1SecureIoD source codes and its security verification programs are publicly
available at the https://github.com/congpu/SecureIoD.
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(a) x0 = 0.5, y0 = 0.5 (b) x0 = 0.53, y0 = 0.47

Fig. 1. Henon map with different initial conditions after 30 iterations, where
the rectangles highlight different sequences of points in same regions.

The authors in [25] propose an authentication scheme based

on blockchain for drone-enabled smart cities. A group of

drones are divided into sub-groups based on their geographical

locations, and drones from different sub-groups can commu-

nicate securely using a customized decentralized consensus

algorithm without re-authenticating. In [26], a communication

framework based on blockchain technique is designed for UAV

systems. In order to reduce the overhead of computation and

storage on UAVs, the authors modify the transaction and the

structure of block. In addition, the authors also design a del-

egated Proof-of-Stake consensus protocol which can be used

to achieve the agreement among a group of trustless UAVs.

However, the common issue of the above two approaches

[25], [26] is that drones do not have any tamper-resistant

capabilities. Once the adversary physically captures a drone

and extracts all stored credentials, the entire framework and

its access control mechanism could be compromised. In [27],

a data collection mechanism using blockchain is proposed

to assist drones to collect data in the IoT environment. The

primary responsibilities of drones are to fly over the IoT

devices, provide wireless network access as well as collect

data. As a return, drones will receive charging credits so that

they can spend them for charging time. Moreover, drones will

store the collected data in the blockchain to defend against

malicious attacks. The authors in [28] present a survey on

security issues in 5G-enabled UAV networks. In addition, they

discuss blockchain-based security solutions and summarize

potential research challenges in the integration of blockchain

with 5G-enabled UAVs.

Quite recently, several blockchain-based security protocols

and techniques have been proposed for the IoD environment.

However, none of the above security protocols provide su-

perior security and performance simultaneously. To the best

of our knowledge, we design the first secure data collection

and storage mechanism based on physical unclonable function,

Henon map, and blockchain for the IoD environment.

III. PRELIMINARY BACKGROUND

A. Physical Unclonable Function

A physical unclonable function (PUF) is widely used as

the electronic device’s physical identity, and has emerged as a

promising solution for defending against physical attacks [29].

The rationale behind the design of PUF is that the input-output

mapping exploits the intrinsic fabrication and manufacturing

Fig. 2. Illustration of secure data collection and storage framework for the
IoD environment.

variabilities in the process of making integrated circuit (IC).

For every PUF, an input value, called ‘‘challenge’’, receives a

corresponding output value, called ‘‘response’’, based on the

physical microstructure of the device. A challenge together

with the corresponding response is known as a challenge-

response pair (CRP). Generally, a PUF can be represented as a

secure one-way function Fpuf , RE = Fpuf (CH), where CH
and RE are the input challenge and output response of PUF,

respectively. If the same challenge is fed into an authentic PUF

multiple times, the same responses will be produced each time.

On the other side, the same challenge provided to different

PUFs will produce totally different responses.

B. Henon Map

A chaotic system is defined as one that significant difference

in system’s behavior can be caused by the smallest changes

in the system. The word chaos is described as ‘‘a state

of utter confusion or disorder; a total lack of organization

or order.’’ The Henon map [30], sometimes called Henon-

Pomeau attractor/map, is one of discrete-time and dynamical

chaotic systems. The underlying patterns and deterministic

laws, which are sensitive to initial conditions of chaotic

system, determine the randomness and irregularities of Henon

map. The Henon map is a two-dimensional chaotic system,

accepting a coordinate point (xn, yn) and mapping it to a new

point according to xn+1 = 1 − ax2
n + yn and yn+1 = bxn,

where a and b are defined as system parameters. In Henon

map, the chaos can be shown with certain system parameter

values (i.e., a and b) and initial condition (i.e., x0 and y0). The

exact same chaos or sequence of points cannot be reproduced

if there is no right initial condition (x0, y0). As shown in Fig.

1, a different sequence of points will be plotted when different

initial conditions are provided to the Henon map.

IV. SYSTEM AND ADVERSARY MODELS

A secure data collection and storage framework for the

IoD environment is depicted in Fig. 2, where there are two

major entities: drones and ZSPs. Drones are equipped with on-

board sensors and communication devices, which are capable

of gathering and sharing data. In addition, each drone is also

armed with a PUF enabled integrated circuit. ZSPs form a

peer-to-peer (P2P) network and complete the following two
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tasks: i) generate a block: collect, validate, and pack data into

a block; ii) add the block in the blockchain: compete to add

the block in the blockchain using the consensus mechanism.

We assume that a drone first chooses its real identity IDi

and the CRP challenge CHts
i . Then, the drone obtains its

initial CRP (CHts
i , REts

i ) according to Fpuf and computes its

initial pseudonym PIDts
i , PIDts

i = H(IDi ‖ REts
i ). Here, ts,

H(·), and ‖ are the current timestamp, the collision-resistant

cryptographic one-way hash function, and the concatenation

operation, respectively. The drone’s real identity IDi is not

transmitted directly in plain text but in a masked form (or

pseudonym) PIDts
i . Due to the hardness of guessing a large

sequence of random numbers (i.e., 256 bits for SHA-256),

the adversary is infeasible to compute drone’s real identity

without knowing the CRP response. Therefore, the privacy of

drones’ identities or the drone anonymity can be guaranteed.

In addition, the time-varying CRP response REts
i is embedded

in the hash function to calculate the pseudonym of drone,

which can achieve un-traceability. Then, the drone shares its

IDi, (CHts
i , REts

i ), and PIDts
i with ZSPs securely using

the time-based OTP algorithm (TOTP) [31] during the system

deployment phase. Once the system deployment phase is over,

ZSPs store each drone’s real identity, initial CRP, and initial

pseudonym, while drones only store their real identities and

challenges of initial CRP.

According to the widely adopted adversary model, any two

communicating entities who communicate over an insecure

wireless channel are assumed to be untrustworthy [13]. An

adversary not only can overhear and intercept the transmitted

messages, but also can duplicate, corrupt, alter, or replay the

message contents. In addition, a drone with the collected

sensitive information may move to an unattended hostile area,

where an adversary can issue malicious commands (i.e., ‘‘anti-

drone-gun’’ [32]), and capture and withhold the drone for

malicious purposes. If the adversary tries to probe the IC of

captured drone to retrieve critical cryptographic information,

however, this attempt will irreversibly change the physical

variations of IC, and finally destroy the PUF. Furthermore,

ZSPs are considered as fully trusted entities and will not be

compromised by the adversary. The goal of the adversary is

to establish a communication with drones or ZSPs and inject

malicious data/commands in the IoD environment without

being detected. For example, if a drone is communicating

with a ZSP for navigation information and the adversary

plans to authenticate itself to the drone as a ‘‘legitimate

ZSP’’, this scenario can pose a threat to government, national

institutions, and assets (e.g., using drone as an improvised

explosive device).

V. THE PROPOSED SECURE DATA COLLECTION AND

STORAGE MECHANISM

The basic idea of SecureIoD is that drones and ZSPs first

mutually authenticate each other and establish a secure session

key based on physical unclonable function and Henon map

before sharing any sensitive data via an insecure wireless

channel. Then, ZSPs pack the collected data into blocks and

TABLE I
NOTATIONS AND THEIR DESCRIPTIONS

Notation Description
Zs Identity of the sth ZSP
IDi Real identity of the ith drone
ts Current timestamp
PIDts

i Pseudonym of the ith drone
Nts

i Random number generated by IDi

Nts+1
s Random number generated by Zs

(CHts
i , REts

i ) PUF CRP of IDi

S(·)(CHts
i ,REts

i ) Random shuffling with CRP

S−1(·)(CHts
i ,REts

i ) Reverse process of random shuffling with CRP

C(·) Message Authentication Code (MAC) function
H(·) Collision-resistant one-way hash function
⊕ Bitwise XOR operation
‖ Concatenation operation
Mi The ith message
MACi MAC of the ith message
SKi,s or SKs,i Secure session key between IDi and Zs

compete to add their blocks into the blockchain based on the

proposed joint Proof-of-Work (PoW) and Proof-of-Stake (PoS)

consensus mechanism. SecureIoD is comprised of two parts:

(i) mutual authentication and key establishment; and (ii) miner

ZSP selection and block generation. Table I lists all notations

used in this paper.

A. Mutual Authentication and Key Establishment Phase

Considering the scenario that drones are deployed in a

congested area where the chances of coronavirus disease

(COVID-19) spreading are high. Drones help to collect and

send an amount of health data (i.e., thermal images of people)

to nearby ZSPs for further processing and taking appropriate

action. Since maintaining confidentiality, privacy, and security

of health data is of paramount importance, a drone IDi who

wishes to deliver the collected health data to a ZSP Zs needs

to first achieve mutual authentication and establish a secure

session key with ZSP Zs. The detailed steps are as follows.

1) Drone IDi first computes its pseudonym as PIDts
i =

H(IDi ‖ REts
i ) using its real identity IDi and CRP

response REts
i . Then it generates a random number

N ts
i and calculates an encrypted message M1, where

the plain text, (PIDts
i ‖ Zs ‖ N ts

i ), will be arranged in

a random shuffling using the Henon map with the CRP

(CHts
i , REts

i ) as initial condition.

M1 = S(PIDts
i ‖Zs‖N ts

i )(CHts
i ,REts

i ).

It also calculates the message authentication code

(MAC) MAC1 as follows

MAC1 = C(M1‖N ts
i ).

Finally, it sends authentication request message [M1,

MAC1] to ZSP Zs.

2) ZSP Zs first tries to locate PIDts
i in the database.

If PIDts
i is not found, the authentication request is

rejected. Otherwise, it fetches the entry [IDi, PIDts
i ,

(CHts
i , REts

i )] for drone IDi. Then, it retrieves N ts
i

′

from M1 through S−1(M1), which is the reverse process

of shuffling with the CRP (CHts
i , REts

i ) as initial

condition. With N ts
i

′
, it can calculate MAC

′
1 = C(M1 ‖
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N ts
i

′
) and check it with the received MAC1. If MAC

′
1

= MAC1, the message verification succeeds. Otherwise,

it discards the message. Next, it generates a random

number N ts+1
s , and calculates an encrypted message M2

and MAC MAC2 as follows

M2 = S(PIDts
i ‖Zs‖N ts

′

i ‖N ts+1
s )(CHts

i ,REts
i ),

MAC2 = C(M2‖N ts
′

i ‖N ts+1
s ).

Finally, it sends message [M2, MAC2] to drone IDi.

3) Drone IDi first retrieves N ts+1
s

′
from M2 through

S−1(M2) and calculates MAC
′
2 as follows

MAC
′
2 = C(M2‖N ts

i ‖N ts+1
′

s ).

If MAC
′
2 = MAC2, the message verification succeeds.

Otherwise, it discards the message. Then, it generates a

random number N ts+1
i and computes its new CRP as

follows

CHts+1
i = S(N ts+1

′

s ‖N ts+1
i )(CHts

i ,REts
i ),

REts+1
i = Fpuf (CHts+1

i ).

After that, it calculates the following

M3 = S(PIDts
i ‖Zs‖N ts+1

′

s ‖N ts+1
i )(CHts

i ,REts
i ),

M4 = S(PIDts
i ‖Zs‖N ts+1

′

s ‖N ts+1
i ‖REts+1

i )(CHts
i ,REts

i ) ,

MAC34 = C(M3‖M4‖N ts+1
i ‖REts+1

i ).

Finally, it sends message [M3, M4, MAC34] to ZSP

Zs, updates its CRP (CHts+1
i , REts+1

i ), and calculates

the secret session key as follows

SKi,s = H(N ts+1
i )⊕H(N ts+1

′

s ).

4) ZSP Zs first retrieves N ts+1
i

′
and REts+1

i

′
from M3

and M4 through S−1(M3) and S−1(M4), respectively.

Then, it calculates MAC
′
34 as follows

MAC
′
34 = C(M3‖M4‖N ts+1

′

i ‖REts+1
′

i ).

If MAC
′
34 = MAC34, the message verification suc-

ceeds. Otherwise, it discards the message. After that, it

computes drone IDi’s new CRP challenge CHts+1
i and

new pseudonym PIDts+1
i , and then updates the entry

[IDi, PIDts+1
i , (CHts+1

i , REts+1
i

′
)] in the database.

CHts+1
i = S(N ts+1

s ‖N ts+1
′

i )(CHts
i ,REts

i ),

P IDts+1
i = H(IDi‖REts+1

′

i ).

Finally, it calculates the secret session key as follows

SKs,i = H(N ts+1
s )⊕H(N ts+1

′

i ).

At this moment, drone IDi and ZSP Zs have successfully

verified each other’s identities and established a secure session

key SKs,i (or SKi,s) for subsequent communications. The

above process is shown in Fig. 3.

Fig. 3. Mutual authentication and secure session key establishment between
drone IDi and ZSP Zs.

B. Miner ZSP Selection and Block Generation

After collecting data from drones, ZSPs put these data into

blocks and try to add them into the blockchain. However,

the centralized ZSP does not exist in the decentralized net-

work structure to manage the blockchain. In addition, many

ZSPs may attempt to add a new block in the blockchain

simultaneously, thus a miner ZSP should be elected from all

ZSPs competitively. In this paper, we propose a joint Proof-of-

Work (PoW) and Proof-of-Stake (PoS) consensus mechanism

to select the miner ZSP. The basic idea is that ZSPs take the

number of transactions in the block as the stake to determine

the difficulty to complete the PoW, In other words, the more

transactions are in the block, the easier a ZSP can solve the

cryptographic puzzle. The rationale behind this design is that

the block containing more transactions can be added in the

blockchain earlier and quicker, as it affects the whole ledger

significantly and timely. To be specific, a ZSP needs to find

a hash value satisfying the following target criterion so that it

can become the miner

H(ZSPID, ts, prevHash, nonce) ≥ Hashth
ID, (1)

where the ZSP ID, ZSPID, the current timestamp, ts, the

previous block’s hash value, prevHash, as well as the nonce
are used to calculate the block’s hash value.

Hashth
ID is the hash threshold of ZSP ZSPID and can be

adjusted to control the difficulty level of cryptographic puzzle

or the block generation speed. To be specific, Hashth
ID is a
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Fig. 4. Change of the number of leading zeros (Nstake) against the number
of transactions (Ntrans) in the block.

series of binary bits starting with a set of continuous zeros,

which depends on the number of transactions Ntrans in the

block. Here, Hashth
ID is defined as follows

Hashth
ID = concat(zeros(Nstake), T gt

th), (2)

where zeros(Nstake) and Tgtth are the Nstake number of

leading zeros in Hashth
ID and the random numbers following

the Nstake number of leading zeros in Hashth
ID, respectively.

concat(x, y) is the concatenation function that concatenates

both binary numbers x and y as x + y. For example,

Hashth
ID = concat(zeros(3), 101)

= concat(000, 101)

= 000101.

In addition,
Nstake = [γ + α · eNtrans·β ], (3)

Tgtth = rand(2Nhash−Nstake − 1), (4)

where Nhash is the total number of bits of the hash value

(i.e., Nhash is 256 for SHA-256) and rand() is the random

number generation function. [.] returns the integral part of the

value, and α, β and γ are system parameters. Fig. 4 shows

the change of the number of leading zeros (Nstake) against

the number of transactions (Ntrans) in the block. When the

number of transactions in the block increases, the number of

leading zeros also increases. In that case, a ZSP can find a

nonce which meets the target criterion Eq. (1) quicker.

The ZSP will be selected as the miner ZSP to add its block

into the blockchain if it is the first one who finds a nonce
that satisfies the target criterion Eq. (1). The miner ZSP packs

the transactions and other basic information into a block, and

then distributes the block along with its digital signature to all

other ZSPs through P2P network. In each transaction block,

the number of transactions in the block body is used to verify

the hash threshold according to Eq. (2) and (3). The ZSP

ID, the timestamp of block generation, the hash of previous

block, and the nonce in the block header are used to prove the

validity of the miner ZSP. When other ZSPs receive the newly

generated block, they will check whether the block satisfies the

target criterion Eq. (1) and the piggybacked digital signature

is valid. If both verification succeed, other ZSPs will add the

(a) (b)

Fig. 5. Results of security verification using CL-AtSe and OFMC back-ends
in AVISPA.

block into their blockchains. Otherwise, the newly generated

block will be discarded and a different miner will be elected.

When a ZSP starts receiving multiple blocks concurrently, the

fork process will be initiated by the blockchain. In this paper,

a distributed algorithm in [33] is being adopted. The basic idea

is that each ZSP chooses one fork and continues to add new

blocks after it. As time passed, the fork acknowledged by the

largest number of ZSPs grows faster than others. Finally, the

longest one becomes the distributed consensus of the network,

while other forks are discarded.

VI. SECURITY ANALYSIS

A. Security Verification Using AVISPA and Scyther

We first evaluate SecureIoD using the Automated Validation

of Internet Security Protocols and Applications (AVISPA) tool

[17] to check whether it is secure against man-in-the-middle

attacks and replay attacks. Security professionals can imple-

ment their security protocol along with security features in

the High-Level Protocol Specification Language (HLPSL) and

then verify its security performance in AVISPA. In addition,

AVISPA integrates two major back-ends: On-the-fly Model-

Checker (OFMC) and Constraint-Logic-based Attack Searcher

(CL-AtSe). The OFMC can be used not only for the detection

of potential attacks, but also for proving the correctness of

protocol for a bounded number of sessions. The CL-AtSe is

able to translate security protocol specification written in the

intermediate format into a group of constraints which can be

used to discover potential attacks on protocols.

We implement the mutual authentication and key establish-

ment phase in HLPSL. In the implementation, there are two

basic roles: drone and ZSP. In addition to these two basic

roles, the other four mandatory roles, such as session, goal,

environment, and intruder roles, are also implemented for the

security analysis of SecureIoD in AVISPA. Finally, we set up a

complete and fully functional SPAN+AVISPA [34] on Ubuntu

10.04 which is running in Virtual Box [35]. The results of

security verification are shown in Fig. 5. As we can see that

SecureIoD is secure against replay attacks and man-in-the-

middle attacks. We also use the Semantics and Verification

of Security Protocols (Scyther) tool [18] to further evaluate

the security of SecureIoD. As shown in Fig. 6, SecureIoD can

satisfy all security requirements. The HLPSL security verifi-
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Fig. 6. Result of security verification using Scyther.

cation programs and the Scyther security verification program

are available at the https://github.com/congpu/SecureIoD.

B. Security Analysis

This subsection exhibits that SecureIoD is secure against

drone capture attack, drone impersonation attack, message

modification attack, and ZSP spoofing attack.

Drone Capture Attack: We assume that an adversary has

successfully captured drone IDi who is communicating with

ZSP Zs using session key SKi,s. Through physical memory

disclosure attacks, the adversary can retrieve stored informa-

tion such as drone’s real identity IDi and session key SKi,s.

As a result, the current communication session between drone

IDi and ZSP Zs would be compromised by the adversary with

the obtained session key SKi,s In order to compromise future

communication with ZSP Zs, the adversary has to obtain valid

CRP (CHts+1
i , REts+1

i ) from drone IDi. This is because

a new session key (i.e., requiring new random numbers and

random shuffling with new CRP) will be generated for each

communication session. Thus, the adversary may try to probe

or alter the integrated circuit of drone IDi to retrieve CRP

(CHts+1
i , REts+1

i ). However, the adversary can only obtain

the CRP challenge CHts+1
i , since the CRP response REts+1

i

is dynamically calculated via Fpuf (CHts+1
i ). In addition, this

probing or alteration attempt will irreversibly modify the slight

physical variations of integrated circuit, which in turn destroys

the PUF. Thus, the adversary cannot obtain the valid CRP

(CHts+1
i , REts+1

i ) to compromise future communication.

Last but not least, since each drone will use a different secret

session key to communicate with ZSP Zs, the communication

sessions between other non-captured drones and ZSP Zs are

still secure. In summary, SecureIoD is secure against drone

capture attack.

Drone Impersonation Attack: We assume that an adversary

tries to masquerade as legitimate drone IDa to communicate

with ZSP Zs for malicious purposes. First, the adversary has

to send an authentication request, [M1, MAC1], to ZSP Zs.

The adversary can easily generate a random number N ts
a .

However, it cannot shuffle and calculate valid M1 which can

be correctly decoded by ZSP Zs. This is because the adversary

does not have the valid CRP (CHts
a , REts

a ) which is stored

in ZSP Zs’s database. Thus, the authentication request will

be rejected by ZSP Zs and the adversary cannot establish a

valid communication with ZSP Zs by impersonating legitimate

drone IDa. In summary, SecureIoD is secure against drone

impersonation attack.

Message Modification Attack: We assume that an adversary

captures and modifies the message, either M1, M2, M3 or

M4, transmitting between drone IDi and ZSP Zs. Since both

drone IDi and ZSP Zs will verify the received message by

checking the piggybacked MAC, i.e., MAC2
?
= MAC

′
2, they

can easily detect any modification of messages. In summary,

SecureIoD is secure against message modification attack.

ZSP Spoofing Attack: We assume that an adversary already

captured the message [M1, MAC1] and attempts to imitate

legitimate ZSP Za to communicate with drone IDi. Since the

adversary does not have the valid CRP (CHts
i , REts

i ), thus,

it cannot retrieve the random number N ts
i piggybacked in the

M1 correctly. The adversary can make up a random number

to generate the message [M2, MAC2]. However, when drone

IDi receives the message [M2, MAC2], it can easily detect

the misbehavior through checking whether MAC2 equals to

MAC
′
2 and reject the following communication. In summary,

SecureIoD is secure against ZSP spoofing attack.

VII. PERFORMANCE EVALUATION

A. Experimental Testbed and Benchmarks

We build a real-world testbed which is composed of one

HP ENVY Notebook laptop [19] and one Latte Panda devel-

opment board [20]. The Latte Panda development board is at-

tached to a power bank through a specific plastic holder which

is made with 3D printer. The power bank is capable enough

to support the Latte Panda development board for hours.

In terms of testbed specifications, the HP ENVY Notebook

laptop is running a 64-bit Windows 10 Pro operating system,

and its central processing unit (CPU) is the 7th Generation

Intel Core i7-7500U processor, 4M Cache, up to 3.5 GHz.

The Latte Panda development board runs a full version of

Windows 10, and has Intel Cherry Trail Z8350 Quad Core

processor, 2M cache, up to 1.92 GHz, and 4GB random-

access memory (RAM). The developed real-world testbed is

shown in Fig. 7, where the laptop is used to simulate the ZSP

while the Latte Panda development board is used to mimic

the drone. We implement SecureIoD and benchmark schemes

in the Eclipse environment [36] which is set up in the Latte

Panda development board as well as the laptop.

According to [37], we implement the PUF as a 256-bit hash

function [38]. In addition, the random shuffling function is

implemented as follows. First, the to-be-shuffled message is

represented as an array. Second, the CRP pair (CHts
i , REts

i )

is used as the initial condition of Henon map to generate a

sequence of points. Third, starting from the first point in the se-

quence, the coordinates of a point are converted into an unique

integer, indicating the new location where the first element of

array is to be put in the output array. Now considering the
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Fig. 7. Real-world testbed with one HP ENVY Notebook laptop and one
Latte Panda development board.

array element from the second to the last, the abovementioned

process is repeated till the last array element is shuffled.

Finally, the output array contains the shuffled message. Please

note that the random shuffling function is executed differently

in every communication session. This is because the drone

will compute a new CRP pair during the process of mutual

authentication and session key establishment. Since the CRP

pair is used as the initial condition of Henon map (a = 1.4

and b = 0.3) and a minor change of initial condition in the

Henon map will cause the generation of distinct sequence of

points, the random shuffling operation is performed differently

in every communication session.

We revisit prior approaches, SDDM [21] and BACSIoD

[22], and implement them to work in the testbed for perfor-

mance comparison and analysis. The original idea of these two

benchmark schemes are briefly discussed in the following:

• SDDM [21]: In SDDM, the drone and the user first

mutually authenticate each other through AKA scheme

[39]. Then, a forger drone is selected based on an utility

function using Game theory to create blocks which will

be verified by other normal drones. Finally, the forger

node computes the hash value of the block using the

PoS mechanism, and then broadcasts the hash value to

the distributed network. The other drones will verify and

validate the hash value which was computed by the PoS

mechanism with the hash value computed by Merkle tree.

• BACSIoD [22]: In BACSIoD, all system parameters such

as the elliptic curve and its base point, private and public

keys of the trusted control room, and so on are set

up in the initialization phase. Then, the control room

registers each drone and ground station server during the

registration phase. Before sharing any information, the

drone and the ground station server mutually authenticate

each other and establish a session key through elliptic

curve cryptography. Finally, the ground station server

creates various transactions and forms the block which

will be added in the blockchain through Ripple Protocol

Consensus Algorithm (RPCA) [23].

We measure the performance of SecureIoD, SDDM, and

BACSIoD in terms of running time, CPU time, the number of

clock cycles, energy consumption, and communication cost by

changing the number of algorithm executions and the number

of added blocks.

(a) (b)

Fig. 8. The performance of running time and CPU time of authentication
against the number of algorithm executions.

• Running Time: Running time is the elapsed time from

when the algorithm starts running to when the algorithm

finishes running.

• CPU Time: CPU time (or processing time) is the amount

of time for which the CPU is used for processing instruc-

tions of the algorithm2.

• The Number of Clock Cycles: The number of clock

cycles is measured as the number of electronic pulses

during running the algorithm.

• Energy Consumption: Energy consumption is measured

as the amount of electronic power consumed during

running the algorithm.

B. Experimental Results and Analysis

First, we measure the running time and CPU time of

authentication by changing the number of algorithm executions

in Fig. 8. As shown in Fig. 8(a), the overall running time

of SecureIoD, SDDM, and BACSIoD increase as the number

of algorithm executions increases. It is very straightforward

that a larger number of algorithm executions takes a longer

time to run and finish. SecureIoD shows the lowest running

time with varying number of algorithm executions compared

to SDDM and BACSIoD. This is because SecureIoD employs

lightweight cryptographic operations such as one-way hash

function and random shuffling. Most importantly, these cryp-

tographic operations are executed less number of times. As a

result, a less amount of running time is obtained by SecureIoD.

SDDM adopts AKA scheme [39] as the authentication scheme.

However, in AKA, the one-way hash function is used twenty-

four times (i.e., the user, the drone, and the ground station

execute ten, seven, and seven hash operations, respectively).

In BACSIoD, elliptic curve cryptography is used to achieve

mutual authentication between the drone and the ground

station. Compared to AKA in SDDM, a lower running time is

obtained by elliptic curve cryptography. However, SecureIoD
still outperforms BACSIoD because less number of hash

functions and lightweight shuffling operation are executed

by SecureIoD . In Fig. 8(b), we measure the CPU time of

authentication with varying number of algorithm executions.

Overall, the best performance belongs to SecureIoD, where

2As opposed to running time, CPU time does not include waiting for
input/output (I/O) operations or entering low-power (idle) mode.
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(a) (b)

Fig. 9. The performance of the number of clock cycles and energy consump-
tion of authentication against the number of algorithm executions.

lightweight cryptographic operations are employed to imple-

ment the authentication scheme.

Second, we measure the number of clock cycles and energy

consumption of authentication against the number of algorithm

executions in Fig. 9. In Fig. 9(a), it is shown that the smallest

number of clock cycles is obtained by SecureIoD when the

authentication algorithm is executed one time. The rationale

is that SecureIoD requires less number of operations during

the authentication process, thus, a smaller number of clock

cycles is measured by SecureIoD compared to SDDM and

BACSIoD. SDDM delivers the largest number of clock cycles

since the AKA scheme needs to execute more hash opera-

tions than SecureIoD and BACSIoD. In Fig. 9(b), the energy

consumption of authentication are measured for all three

schemes by changing the number of algorithm executions.

When we increase the number of algorithm executions from

one to ten, the energy consumption of SecureIoD, SDDM, and

BACSIoD increases linearly. Since the algorithm is executed

more times, a larger amount of energy resource is needed.

However, the lowest energy consumption is still observed by

SecureIoD. This is because SecureIoD employs lightweight

cryptographic operations such as one-way hash function and

random shuffling, which consumes less amount of energy.

Third, we measure the running time and energy consump-

tion of miner selection with varying number of added blocks

in Fig. 10. As shown in Fig. 10(a), the running time of miner

selection for all three schemes increases as the number of

added blocks increases. In SecureIoD, we propose a joint PoW

and PoS consensus mechanism to select the miner ZSP. If there

are more transactions in the block, the ZSP has more chances

to be selected as the miner to add the block in the blockchain.

Thus, a less amount of running time is observed for the

selection of miner ZSP in SecureIoD. In SDDM, a forger

node selection algorithm is proposed to select the miner drone.

However, the miner drone selection algorithm is designed

based on an utility function using Game theory, which takes

more time for a drone to become the miner. In BACSIoD,

Ripple Protocol Consensus Algorithm (RPCA) is adopted as

the consensus mechanism in the blockchain. However, RPCA

is more complex than the joint PoW and PoS consensus mech-

anism in SecureIoD and the forger node selection algorithm

in SDDM. Thus, the largest running time of miner selection is

obtained by BACSIoD. In Fig. 10(b), we measure the energy

(a) (b)

Fig. 10. The performance of running time and energy consumption of miner
selection against the number of added blocks.

TABLE II
COMPARISON OF COMMUNICATION COST

Metrics SecureIoD SDDM BACSIoD
Number of Messages 3 7 3
Energy Consumption (joule) 3.38×10−4 7.88×10−4 3.38×10−4

consumption of miner selection for SecureIoD, SDDM, and

BACSIoD. Clearly, SecureIoD still outperforms SDDM and

BACSIoD in terms of energy consumption of miner selection.

Finally, we measure the communication cost in terms of the

number of messages and energy consumption of communica-

tion in Table II. To mutually authenticate drone and user and

establish a session key, AKA scheme in SDDM requires seven

messages to be exchanged among drone, control server, and

user. To be specific, a drone and an user first exchange two

messages with the control server during the registration phase,

respectively. Then, the user sends an authentication request

message to the control server through a public channel. After

receiving the authentication request message from the user,

the control server verifies the message and sends the message

to drone via a public channel. Finally, the drone checks the

validation of message and sends a message to user if the verifi-

cation succeeds. In BACSIoD, the drone first sends a message

piggybacked with a set of critical information (i.e., a hash

value and certificate) to the ground station. After verifying

the received certificate, the ground station generates a secret

hash value and sends it back to the drone. Finally, the drone

replies an acknowledge message back to the ground station.

In SecureIoD, as shown in Fig. 3, only three messages are

required to achieve mutual authentication and secure session

key agreement. First, a drone sends an authentication request

message piggybacked with its pseudonym, PUF response,

and random number to ZSP. Then, ZSP verifies the received

message and replies a message with one random number.

Lastly, the drone forwards a message with the updated CRP to

ZSP. By this time, the mutual authentication is completed and

the secure session key has been established between drone and

ZSP. In addition, the energy consumption of communication

for SecureIoD, SDDM, and BACSIoD is 3.38×10−4 joules,

7.88×10−4 joules, and 3.38×10−4 joules, respectively. Here,

the energy consumption of communication is measured based

on the number of sent and received messages [40]. It is clear

that SecureIoD has a lower communication overhead compared

to other two schemes.
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VIII. CONCLUSION

In this paper, a secure data collection and storage mech-

anism, called SecureIoD, was proposed for the IoD envi-

ronment. The basic idea of SecureIoD is that drones and

ZSPs first mutually authenticate each other and establish a

secure session key before sharing any sensitive data via an

insecure wireless channel. After that, ZSPs pack the collected

data into blocks and compete to add their blocks into the

blockchain. We also proposed a joint PoW and PoS consensus

mechanism to select the miner ZSP, where a ZSP that has more

transactions in the block can solve the cryptographic puzzle

easier. We verified the security of SecureIoD through specific

security protocol verification tools (i.e., AVISPA and Scyther)

and security analysis. The verification and analysis results

showed that SecureIoD is a secure protocol. Most importantly,

it is immune against various types of security attacks. In

addition, we developed a real-world testbed consisting of

a Latte Panda development board and a laptop, conducted

extensive simulation experiments, and compared SecureIoD
with prior benchmark schemes for performance evaluation

and analysis. The experimental results showed that SecureIoD
provides better performance in terms of running time, CPU

time, clock cycle, and energy consumption.
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