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Abstract—In this paper, we develop centralized and distributed

dynamic resource allocation schemes for an intelligent reflect-
ing surface (IRS) aided energy harvesting (EH) system that
optimize transmit power of a source node and phase-shift of
passive reflecting elements of IRS. The source node randomly
harvests renewable energy from the surrounding environment
and performs data transmission with the harvested energy
while satisfying statistical packet delay constraints in terms of
maximum acceptable delay–outage probability. Our developed
schemes do not require the statistical distributions of channel
and energy profiles to be known and apply deep reinforcement
learning (DRL) algorithm. Simulation results demonstrate the
effectiveness of the proposed resource control scheme for IRS-
aided EH system in different channel and energy conditions.

Index Terms—Intelligent Reflecting Surface, Effective Capac-
ity, Energy Harvesting, Deep Reinforcement Learning.

I. INTRODUCTION

Recently, design of intelligent reflecting surface (IRS) as-
sisted wireless communication systems has attracted signifi-
cant attention in the research community due to the recent
advancements of metamaterials and radio frequency (RF)
electronics [1]. In general, IRS is a planar surface composed of
a large number of passive reflecting elements (PREs), each of
which can induce a controllable change of amplitude and phase
of the incident signal independently and hence can change the
reflected signal propagation in real time. A joint active transmit
beamforming at the access point (AP) and passive reflection
beamforming at the IRS was developed in [2] for single and
multi-user scenarios that minimizes the total transmit power
at the AP while maintaining minimum signal-to-noise ratio
(SNR) requirements. The energy efficiency of a downlink
multi-user communication system was maximized in [3] by
joint power allocation at the base station (BS) and phase-shift
design at IRS. In [4], an optimal length was calculated for
pilot training symbols by maximizing the asymptotic spectral
efficiency for an IRS-aided communication system.

In this paper, we consider an IRS-aided point-to-point
communication system, where the source node is powered
by randomly available renewable energies [5]. We consider
a statistical delay quality-of-service (QoS) constraint at the
source node, where the transmission delay is allowed to
surpass a delay threshold within a maximum tolerable (delay)
outage probability (OP) [6]. Our objective is to study the
behavior of IRS for an energy harvesting (EH) system while
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considering delay QoS constraint and thereby to develop
resource control schemes in order to maximize the end-to-end
system throughput. Recently, an EH source is considered at the
IRS in [7], where a joint transmit power allocation at the BS
and phase-shift design at IRS was proposed by incorporating
deep reinforcement learning (DRL) technique. In contrast to
[7], in this paper, we focus on developing centralized and
distributed dynamic resource allocation or resource control
schemes that optimize resources over time intervals and learn
the system behavior while satisfying delay QoS and EH con-
straints. Furthermore, extensive research has been conducted
while developing IRS-aided simultaneous wireless information
and power transfer (SWIPT) protocols in different use-cases
in [8]–[10]. The contributions of this paper are summarized as
follows:

• Our developed resource control schemes jointly optimize
transmit power at the source node and phase-shift of the
PREs at IRS.

• The proposed schemes incorporate statistical delay QoS
constraint and do not require channel and energy statistics
to be known to calculate optimal resources.

• The distributed scheme leverages DRL and entails low
computational complexity.

II. SYSTEM MODEL

Fig. 1: An IRS-aided point-to-point communication system.
We consider an IRS assisted communication system, where

the transmitter S sends information signal to the receiver
D via direct link and IRS I, see Fig. 1. Note that S and
D operate with single transmit antenna and single receive
antenna, respectively. S does not have an off-the-shelf constant
power supply (e.g., generator, high capacity battery, etc.).
Instead, the node is equipped with an EH module, which can
harvest renewable energies from the surrounding environment
in the form of solar, wind, thermal, mechanical, etc. Once
harvested, energies are stored in a small-size battery with
limited capacity, and are used for signal processing and data
transmission purpose. We assume that the data packets at S
arrive at a constant rate ν (say, in the form of transport blocks
(e.g., in long term evolution (LTE), WiFi, etc.) from high
layers) and are stored in a data queue. The data packets are
then released from the data queue and sent to D directly and
via I based on the available energy (at S) and the channel
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conditions of S–D and S–I–D links. The data transmission
happens over time intervals of equal duration T seconds (s).
I is composed of N = NANE PREs in a uniform planar
array (UPA), where NA and NE represent the number of
elements in the azimuth and elevation planes, respectively.
The purpose of using IRS is to assist the communications
between two communicating nodes by dynamically adjusting
the phase-shift of each of the PREs. It is worth mentioning
that IRS yields higher spectral efficiency over conventional
amplify-and-forward and decode-and-forward relays as most
of the relays work in half-duplex mode whereas IRS, designed
by passive elements, operates on the full-duplex mode [1].
Channel Model: We consider baseband equivalent channel
models for the considered S–D and S–I–D links, where the
channel in each link is assumed to be block–faded over the
transmission time intervals. In particular, we define the base-
band equivalent complex-valued channel gain matrices in time
interval k ∈ {1, 2, · · · } for S–I and I–D links as g(k) and
h(k), respectively, where, g(k) = [g1(k), g2(k), · · · , gN (k)]T

and h(k) = [h1(k), h2(k), · · · , hN (k)]T . We denote gn(k) =
|gn(k)|ejθgn (k) (hn(k) = |hn(k)|ejθhn (k)), where gn(k)
(hn(k)), n ∈ {1, 2, · · · , N} represent the Rician channel
fading coefficients with non-zero mean βg (βh) and variance
σ2
g (σ2

h). Moreover, we define hd(k) = |hd(k)|ejθhd
(k) as

the complex channel fading for S–D link in time interval
k ∈ {1, 2, · · · }, where hd(k) possesses zero mean and
variance σ2

d. It is worth mentioning that the high likelihood
of line-of-sight (LOS) components for S-I and I-D links
justifies the assumptions of Rician fading channels. On the
contrary, we assume that S and D are far apart from each
other and the probability of establishing a LOS path is
very small. Note that θgn(k), θhn(k), and θhd

(k) depict the
random phase of gn(k), hn(k), and hd(k) in [0, 2π). It is
worth mentioning that the indirect channel between S and D
through I is often represented as keyhole channel [2]. Let
us denote Ψ(k) = [ψ1(k), ψ2(k), · · · , ψN (k)]T and Θ(k) =
diag(αejψ1(k), αejψ2(k), · · · , αejψN (k)), where ψn(k) and α
represent the phase-shift and constant amplitude1 reflection
coefficient, respectively of PRE n ∈ {1, 2, · · · , N} of IRS in
time interval k ∈ {1, 2, · · · }. Therefore, the composite S–I–
D channel is modeled as a cascaded version of S–I link, IRS
reflections with phase-shifts and amplitude coefficients, and
I–D link.
Signal Model: The received signal y(k) at D in transmission
time interval k ∈ {1, 2, · · · } can be represented as

y(k)=
(
hd(k) + α

N∑
n=1

hn(k)e
jψn(k)gn(k)

)
x(k) + w(k), (1)

where x(k) represents the signal transmitted by S with
instantaneous power P (k) = |x(k)|2, and w(k) denotes the
additive white Gaussian noise (AWGN) with zero mean and
variance σ2

w. Therefore, the instantaneous received signal-to-
noise ratio (SNR) can be expressed as γ̃Ψ(k) = γΨ(k)P (k),

where γΨ(k) = |hd + α
N∑
n=1

hn(k)e
jψn(k)gn(k)|2/σ2

w ∈ G.

Here, G represents the state space of squared end-to-end
channel gain.
Energy model: S is powered by an EH module, which collects
E(k) Joules (J) of renewable energies from the surrounding
environment during time interval k. We model E(k) ∈ E as

1In general, each PRE is designed to maximize the signal reflection [1].
Hence, without loss of generality, we set α = 1 in the simulation results.

a stationary random variable with energy state space E and
probability density function fE(E). The renewable energies
are stored in a battery, where the state of the battery is updated
at the beginning of the time interval. Considering B(k) as the
stored energy in the battery at the beginning of time interval
k, the battery state is updated as follows [5]:

B(k + 1) = [B(k)− TP (k)− ζ]+ + E(k), ∀k, (2)
where [v]+ = max{v, 0} for any v, and ζ represents a
constant energy consumption due to signal processing tasks
at S. Note that ζ does not change over time and hence
is not considered as part of optimization variables. Thus,
{B(k)} ∈ B follows a first–order MDP that depends only
on the present and immediate past conditions. The state of the
battery is represented by B. When transmitting with power
P (k) under channel state γΨ(k) while occupying bandwidth
W Hz, the throughput can be represented by Shannon’s
formula: U(k) = TW log2(1 + P (k)γΨ(k)).
Delay model: S is equipped with a data queue that stores
the incoming data with the constant rate η and supports the
service rate {U(k)}. Denoting D(k) ≥ 0 be the length of the
data queue at the onset of time interval k, the queue state is
updated as

D(k + 1) = D(k)−min{D(k), U(k)}+ η, ∀k. (3)
Considering the steady–state data queue length D is bounded,
we define the statistical delay QoS constraint as

Pr(D > Dmax) ≤ ϵ, (4)
where Pr(x) denotes the probability of an event x. Moreover,
Dmax and ϵ ∈ (0, 1) express the maximum queue–length and
delay OP, respectively. Note that a smaller (larger) ϵ represents
a more (less) tight delay requirement for a given Dmax.

III. PROPOSED DYNAMIC RESOURCE ALLOCATION

In this section, we develop a framework for joint power
allocation at S and phase optimization of PREs at I that max-
imizes η for a given statistical delay QoS and EH constraints
(at S).

A. Problem Formulation
The randomness in harvesting renewable energies at S while

satisfying the delay QoS constraint poses challenges in the
design and optimization of the considered system. In order to
tackle the challenges, we formulate an optimization problem

Pr-1: max
η,Ψ(k),P (k)≥0,∀k

η (5)

s.t.: Constraints (2), (3), and (4), (6)
ψn(k) ∈ Z, ∀n,∀k. (7)

Constraint (7) in Pr-1 confirms that ψn(k) possesses values
from a discrete set of phase-shift Z . It is worth mentioning
that the optimal value obtained from Pr-1 depicts the ‘effective
capacity’ of the considered IRS system. To address delay con-
straint (4), the distribution of D is required to be investigated,
which is quite challenging. We follow [11, Sec. III-A.1], adopt
the asymptotic delay analysis, convert the statistical delay
constraint (4) into a more tractable form, and reformulate Pr-1
as follows:

Pr-2: max
Ψ(k),P (k)≥0,∀k

− log E{e−θ
tarU(k)}/θtar (8)

s.t.: Constraints (2) and (7), (9)
where E{·} represents statistical expectation and θtar =
− log ϵ/Dmax. Assuming θ = θtarTW/ log(2), where log(·)
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denotes the natural logarithm, and exploiting the monotonicity
of log(·), Pr-2 can be represented as follows:

Pr-3: min
Ψ(k),P (k)≥0,∀k

E
{
(1 + γΨ(k)P (k))

−θ
}

(10)

s.t.: Constraint (2) and (7). (11)
Remark 1: Minimizing the objective function of Pr-3 results
in maximizing the effective capacity of the considered IRS-
aided system while jointly optimizing the transmit power of S
and phase-shift of IRS elements and satisfying the end-to-end
delay QoS and EH constraints for S.
Remark 2: We observe that Pr-3 represents an infinite-horizon
Markov decision process (MDP) because of the presence of
(2). An optimal approach to solve Pr-3 is to apply dynamic
programming (DP) and calculate optimal power and phase-
shift (of IRS elements) over time. This approach requires the
statistics of the channel and EH processes to be known.

B. Problem Solution

In this section, we develop two solution approaches for Pr-3.
• First, in the Centralized Scheme, we explore how P (k)

and ψn(k), ∀n can be optimized jointly while considering
the instantaneous (accurate) channel state information
(CSI) of all the links and the (accurate) energy states
of the battery at S to be known. This scheme can be
readily deployed at a single node (e.g., in S). Once the
optimal phase-shift is calculated (e.g., in S), it is sent to
I through backhaul channel to adjust the phases of PREs
to optimal values.

• Second, in the Distributed Scheme, we sequentially solve
optimal ψn(k), ∀n and P (k) to reduce the computa-
tional complexity of the proposed Centralized Scheme.
This (distributed) scheme can be applied in a distributed
fashion in between S and I provided that the IRS module
is connected with active (sensing) module that tunes
the phase of PREs to optimal values after sensing the
channel phases and then sending this (optimized phase-
shift) information back to S. S then optimizes P (k).

1) Centralized Scheme: Joint Optimization of Power and
Phase-Shift: Let us define a stationary policy π as a sequence
of the decision rules (mapping function selecting optimal
P (k) and Ψ(k) for given states) that are independent of time
intervals. Moreover, we denote Π as the set containing all the
feasible policies for Pr-3. Mathematically, π is expressed with
an (N+1)-tuple function (P,Ψ) : B×G → R+×R+N

, where
R+ represents the set of non–negative numbers. We denote
a policy π∗ as the optimal policy that solves Pr-3. As we
assume that the channel and energy statistics are unknown to
the resource controller, solving Pr-3 in order to obtain optimal
P (k) and Ψ(k) over transmission time intervals is indeed a
challenging task. Let us define V (B, γΨ) as the state value
function for Pr-3. The Bellman’s optimality equation for Pr-3
can be written as follows [12]:
V (B, γΨ) = min

TP∈[0,B],
Ψ∈Z

{
(1 + γΨP )

−θ +
∑

γ̂∈G,Ê∈E

pG(γ̂Ψ)pE(Ê)

V (B − TP − ζ + Ê, γ̂)
}
− V (B0, γ0Ψ), (12)

for a fixed state (B0, γ0Ψ). The optimal policy π∗ is the optimal
solution of (12).

Similar to [13], we define post–decision state (PDS) and
post–decision state–value function (PDSVF) for the considered

problem in (12). The PDSVF W0(B̌) for the considered
system can be defined as

W0(B̌) =
∑

γ̂Ψ∈G,Ê∈E

pG(γ̂Ψ)pE(Ê)W0(B̌, γ̂Ψ) (13)

for PDSs B̌ ∈ B. During the PDS, the dynamics of the
battery in time interval k can be represented as B̌(k) =
[B(k) − TP (k) − ζ]+. The objective of developing PDSVF
helps us to develop online resource control algorithm using
DRL approach that learns the system behavior and calculates
optimal allocation of resources without the knowledge of
channel and energy statistics. Although the resource allocation
schemes developed in this section are applicable for single
antenna case, the PDSVF can be extended for multi-antenna
case (e.g., spatial multiplexing, spatial diversity, etc.) with
appropriate modifications of (12).

From (12) and (13), we can write the optimality equation
as follows:
W0(B̌) =

∑
γ̂Ψ∈G,Ê∈E

pG(γ̂Ψ)pE(Ê) min
TP∈[0,B̌+Ê],

Ψ∈Z

{
(1 + γ̂ΨP )

−θ

+W0(B̌ − TP − ζ + Ê)
}
−W0(B̌

0) (14)

for some arbitrary but fixed state B̌0.
Remark 3: The optimization problem depicted in (14) is a
mixed-integer non-linear problem (MINLP) as the phase-shift
of PREs at I and the transmit power at S possess discrete
and continuous values, respectively. This is a non-convex
optimization problem, and we can adopt spatial branch-and-
bound (sBB) algorithm to solve the problem optimally at the
expense of prohibitively high computational complexity [14].
The worst-case computational complexity of the proposed
centralized scheme in k ∈ {1, 2, · · · } is exponential in N
[14].

2) Distributed Scheme: In order to reduce the computa-
tional complexity of the joint power allocation and phase-shift
design algorithm, we adopt a sequential optimization approach
assisted by DRL. In principle, for a given transmission time
interval, we optimize Ψ for a given P and then for a given
Ψ, we calculate the optimal P . Note that this approach leads
to a suboptimal but computationally tractable solution that
can be readily applied in real-time resource control problem
as depicted in (14). In this sequel, we divide the solution
approach into two subproblems, namely ‘IRS Problem’ and
‘User Problem’ as described in the following.
IRS Problem: We fix P and solve the following problem:

Wi(B̌) =
∑

γ̂Ψ∈G,Ê∈E

pG(γ̂Ψ)pE(Ê)min
Ψ∈Z

{
(1 + γ̂ΨP )

−θ

+Wi(B̌ − TP − ζ + Ê)
}
−Wi(B̌

0). (15)
Following the findings observed in [2, Eq. (28)], we calculate
the optimal choice of ψn(k) to satisfy (15) as follows:

ψ∗
n(k) = θhd

(k)− θgn(k)− θhn
(k), ∀n, ∀k. (16)

Note that ψ∗
n(k) requires instantaneous phase information of

channel states to be known (ψ∗
n(k) does not depend on any

statistical distributions of channels).
User Problem: Once we obtain Ψ∗(k), we solve the following
optimization problem in order to obtain P ∗(k).
W (B̌) =

∑
γ̂Ψ∈G,Ê∈E

pG(γ̂Ψ)pE(Ê) min
TP∈[0,B̌+Ê]

{
(1 + γ̂ΨP )

−θ

+W (B̌ − TP − ζ + Ê)
}
−W (B̌0) (17)
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P (k) = argmin
TP (k)∈[0,B(k)]

{
(1 + γΨ(k)P (k))

−θ+W
(k)
P (B(k)− TP (k)− ζ)

}
. (18)

W
(k)
P (B̌(k))=(1−f(k))W (k)

P (B̌(k))+f(k)( min
TP∈[0,B̌(k)+H(k)]

{(1 + γΨ(k)P )
−θ+W

(k)
Q (B̌(k)−TP (k)−ζ+E(k))}−W (k)

P (B̌(0))). (19)

We assume that the pG(γ̂Ψ) and pE(Ê) are not known to S in
order to solve (17). We apply a time-averaging algorithm that
solves P ∗(k) using (18) while learning the system statistics
by solving PDSVF using (19).
Remark 4: It is worth mentioning that we can adopt the exact
same approach as depicted in [11] to solve problem (17).
However, for a large number of states of the battery, the real-
time implementation complexity can be prohibitively high. In
order to address this problem, we adopt DRL based resource
control approach, where a deep neural network (DNN) is
trained over time to map state-action pair by incorporating
states (B̌(k)) at the input layers and W (k)

P (B̌(k)) at the output
layer of the considered DNN.

We initialize two DNNs, namely deep policy network (DPN)
and deep target network (DTN) in order to approximate
W

(k)
P (B̌(k)) over time intervals. With the help of replay

memory (RM) and considered neural networks (NNs), we
calculate P ∗(k) and update PDSVF. The detailed step-by-
step processes are described in Algorithm 1. Unlike central-
ized scheme, the computational complexity of the proposed
distributed scheme does not grow exponentially with N . In
particular, by following Theorems 1 and 2 in [11], it can be
shown that the complexity of calculating P ∗(k) is polynomial
in N for time interval k ∈ {1, 2, · · · }.

3) Baseline Approach: In this scheme, we do not consider
I to be the part of data transmission and hence do not optimize
the phase-shift of PREs at I. In this baseline approach, S
transmits data to D via hd only, and the optimal power control
algorithm can be designed using the solutions obtained in
[11, Sec. III-B.2]. This approach potentially demonstrates the
usefulness of our proposed schemes in Section IV.

4) Naive Approach: In this naive approach, we do not apply
any power allocation scheme while assuming no involvement
of I in the considered system model. We consider full
consumption of the harvested energy for each time interval
k ∈ {1, 2, · · · } and hence, set P ∗(k) = E(k). In this energy-
hungry naive scheme, we do not apply any intelligent way
of energy conservation for future time interval and thereby
yields very low computational complexity at the expense of
performance degradation.

IV. SIMULATION RESULTS

In this section, we show simulation results for the con-
sidered centralized, distributed, and baseline resource control
schemes. We set T = 5 ms, W = 15 kHz, ζ = 0.1 J,
fk = k−0.8, and Dmax = 100. Furthermore, we consider
Rician fading channels with Rician factors Kg = β2

g/σ
2
g

and Kh = β2
h/σ

2
h for gn(k) and hn(k), respectively and

Rayleigh fading channel for hd(k) for all the results presented
in this section. We assume that E follows uniform distribution
between 0 and 2Ē with average harvested energy Ē. We
consider 106 time intervals all throughout the simulations,
where RM can contain no more than 103 realizations. DPN
and DTN each contains 3 hidden layers with 100 neurons in
each layer. We adopt mean square error (MSE) based loss

Algorithm 1 DRL Algorithm for User Problem

Initialize: RM with size N tuples of experiences.
Each experience contains the tuple e(0) =
(B(0), P (0), U(1), B(1)).
Initialize: DPN with random weights and bias factors. Set
B̌0 ∈ B and obtain W (1)

P (B̌) from DPN.
Initialize: DTN with same the weights and the bias factors
of DPN.
Set: ξ and Ξ as minimum and maximum number of time
intervals, respectively for training.
for k ∈ {1, 2, · · · } do

Calculate P ∗(k) using (18).
Store the experience tuple e(k) = (B(k), P ∗(k), U(k +
1), B(k + 1)) in RM.
if k ≥ ξ then

Create a mini-batch of L elements extracted from RM.
for l ∈ L do

Calculate PDS B̌l(k) = [Bl(k)−TP ∗
l (k)− ζ]+ and

the corresponding PDSVF W
(k)
P (B̌(k)) using (19).

Here, W (k)
Q (B̌(k)) denotes PDSVF obtained from

DTN and f(k) represents learning rate of DRL. The
PDS and PDSVF represent input and output training
sequences, respectively for DPN.

end for
Train DPN with L elements.
if k ≥ Ξ then

Copy DPN weights to DTN.
end if

end if
end for

function and Adam optimizer for the considered NNs [15].
We assume that the b-bit phase-shifters are used at I to
control ψ∗

n(k) [1]. Unless otherwise stated, we set b = 6 all
throughout the simulations. Moreover, we set the learning rate

of DRL f(k) = (1/k)0.8 while satisfying
∞∑
k=0

f(k) = ∞ and
∞∑
k=0

f(k)2 <∞ [16].

Centralized vs. Distributed Schemes: In Fig. 2, we show
effective capacity (b/s/Hz) of the considered system as a
function of delay OP ϵ for centralized and distributed resource
control schemes. We set Kg = Kh = 3, Ē = 2 J, N = 1,
dSI = 50 m, dID = 30.1 m, and dSD = 20.1 m. As
large N results in high computational complexity for the
centralized scheme, we intentionally set N = 1 to compare
the performances of centralized scheme with the distributed
scheme in Fig. 2. We consider two scenarios to show the
results. In Scenario 1 (Sc1) and Scenario 2 (Sc2), we set noise
variances σ2

w = −110 dBm and σ2
w = −70 dBm, respectively.

We first observe that the effective capacity for both centralized
and distributed schemes increases with increasing ϵ. Note
that this trend of effective capacity is expected as smaller ϵ
results in stringent delay QoS constraint (e.g., delay sensitive
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applications), whereas larger ϵ allows S to violate delay QoS
constraints more often (e.g., delay insensitive applications).
We then observe that the distributed scheme performs close to
the centralized scheme for the considered range of ϵ in both
scenarios. For the rest of the simulation results, we present
our results for distributed scheme only.
Performance Analysis of Distributed Scheme: In Fig. 3, we
compare the performance of the proposed distributed resource
control scheme with the baseline scheme. Note that the base-
line scheme does not consider any IRS for communications
between S and D. In particular, we set Kg = Kh = 3 and
N = {50, 10, 1} for the distributed scheme to exemplify
the role of PREs at I for the considered EH system in
contrast to systems without considering IRS. Moreover, we
consider σ2

w = −80 dBm, dSI = 50 m, dID = 20.1 m,
and dSD = 70.1 m. In order to observe the performance of
the proposed scheme under two different QoS constraints, we
show the results for ϵ = 0.9 and ϵ = 0.1 in upper and lower
plots, respectively in Fig. 3. It is evident from Fig. 3 that
increasing Ē increases the effective capacity for both delay
OP (ϵ) and for all the considered values of N in the distributed
and baseline schemes. We observe that increasing N in IRS
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Fig. 4: Convergence behavior of the distributed scheme for
ϵ = 0.9 and ϵ = 0.1 . Upper plot: N = 50 and lower plot:
N = 10.

improves the effective capacity significantly. For instance, in
case of ϵ = 0.9 and Ē = 10 J/s, considering N = 10 and
N = 50 elements in the distributed scheme increases the
effective capacity by 3.5 b/s/Hz and 4.3 b/s/Hz, respectively
over the baseline scheme. The performance improvement for
the distributed scheme (compared to baseline scheme) is even
more significant for a stringent delay constraint. For example,
in case of ϵ = 0.1 and Ē = 10 J/s, considering N = 10
and N = 50 elements in the distributed scheme increases the
effective capacity by 4.65 b/s/Hz and 5.4 b/s/Hz, respectively
over the baseline scheme. For both the considered scenarios,
we observe that the naive scheme shows significant degrada-
tion in effective capacity compared to all the schemes. The
relative poor performance of the naive scheme indicates the
importance of dynamic resource allocation for the considered
EH-system assisted by IRS module.

In Fig. 4, we show the convergence behavior of the dis-
tributed scheme for 50 and 10 PREs with stringent (ϵ =
0.1) and relaxed (ϵ = 0.9) delay constraints. We calculate
the moving average of the effective capacity by applying
Tavg(k) = Tavg(k−1)+(1+γΨ(k)P (k))

−θ/k to demonstrate
the convergence behaviors of the distributed scheme. We
observe that smaller number of PREs provide relatively faster
convergence compared to larger number of PREs. Computer
simulations reveal that the proposed algorithm takes approxi-
mately 9.7 ms and 2.3 ms on average to converge for N = 50
and N = 10, respectively2.

We demonstrate the performance improvement of the
proposed distributed resource control scheme over baseline
scheme in Fig. 5 for different positions of D, while fixing the
locations of S and I. Moreover, we consider N = 10, ϵ = 0.5,
Kg = Kh = 0 to observe the impact of performance gains
with non-LOS components (Rayleigh fading) for S-I and I-
D links. We adopt a metric ∆EC , which is the difference of
the effective capacities between the distributed scheme and the
baseline scheme. Our objective is to find out the trend of the
performance of the distributed scheme when D moves away
from S. We leverage the model similar to [2, Fig. 2], where AP,
IRS, and User nodes are replaced by S, I, and D, respectively.
Likewise, d0,

√
d2 + d2v , and

√
(d0 − d)2 + d2v in [2, Fig. 2]

2All the experiments have been conducted on Apple M1 processor (8-core
CPU, 8-core GPU, and 16-core Neural Engine) with 8 GB unified memory
and and 512 GB SSD on Python framework.
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Fig. 5: Performance improvement of distributed scheme over
baseline scheme ∆EC as a joint function of average harvested
energy Ē and the distance between S and D.
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Fig. 6: Effective capacity vs. average harvested energy Ē for
distributed schemes with DRL and RL.

are replaced by dSI , dSD, and dID, respectively. We slide D
from left to right along a horizontal straight line and hence
change dSD and dID while keeping dSI constant. In Fig. 5,
we set one of the independent axes (horizontal plane) as dSD
and the other axis as the Ē. We observe that when S and D
(and I is far from these nodes) are close to each other, ∆EC is
relatively small. The performance gain starts increasing when
D starts moving away from S and goes close to I. Once D
surpasses I, the performance gain starts degrading. Moreover,
for fixed values of dSI , dSD, and dID, ∆EC starts increasing
with Ē initially before being saturated at high values of Ē.

Fig. 6 compares the effective capacities offered by the pro-
posed DRL-based dynamic resource allocation scheme and by
state of the art reinforcement learning (RL)-based scheme. We
set N = 10 and ϵ = 0.5 while considering two scenarios with
different relative distances among S, I, and D. In Scenario
1, we consider dSD = 20.1m and dID = 30.1m, whereas in
Scenario 2, we fix dSD = 45.4m and dID = 5.39m. For both
scenarios, dSI = 50m is assumed. We observe that both DRL
and RL schemes yield similar effective capacities as a function
of average harvested energy at S. It is worth mentioning that
RL-based scheme does not apply deep learning (DL) algorithm
to update PDSVF as defined in (19). Instead, RL builds a
look-up table, where the state-values are calculated for a large
number of discrete values of the optimization variable and
discrete levels of the states. DRL learns the PDSVF over time
intervals and shows significantly (asymptotic) lower compu-
tational complexity once trained. The observations made in
Fig. 6 indicates that DRL-based resource allocation scheme

can provide the same performance as offered by conventional
RL scheme while handling continuous and large-dimensional
problem states.

V. CONCLUSION

In this paper, we demonstrated the effectiveness of de-
ploying IRS in an EH communication system, where the
source node is powered by renewable energies. Our developed
resource control schemes jointly allocate the transmit power
(of the source) and phase-shift of PREs at IRS by applying
DRL algorithm that does not require the energy and channel
statistics to be known. We demonstrated via simulations the
effectiveness of the proposed scheme for an EH system
compared to the baseline approach, where IRS is not taken into
consideration. The insights obtained from the developed DRL-
based dynamic resource allocation scheme for IRS-assisted
EH communication system will lead to further investigation
of advanced DRL-schemes, e.g., ‘noisy’-DRL, ‘dueling’-DRL,
etc. for a complex and involved network.
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