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Abstract—In the era of Industry 4.0 (4IR), the Internet of
Things (IoT) drives the transformation of conventional operation
mode into intelligent systems through interconnecting smart
devices to monitor, analyze, and optimize the target applications.
In order to achieve energy-saving data transmission, a routing
protocol, called RPL, has been specified for resource-challenged
IoT devices and networks. In the context of 4IR, the IoT
technology is being widely used for mission-critical systems, and
the data collected by IoT devices might contain privacy-sensitive
information. In addition, the IoT gateway could be compromised
due to the lack of necessary and persistent physical and/or logical
security protection. Hence, the protection of data security and
privacy becomes a crucial factor for RPL-based IoT systems
to realize their quality of service requirements and objectives
successfully. In this paper, we propose a secure and privacy-
preserving data aggregation approach, called SPARDA, for IoT
devices and networks running the RPL routing protocol. SPARDA
is realized with physical unclonable function, homomorphic
encryption, and trapdoor function, and is perfectly integrated
with the RPL routing protocol to prevent the malicious IoT
gateway from either accessing, falsificating, or corrupting the
real-time data from IoT devices throughout the data gathering
and summarization phase. We choose an automatic security
protocol verification tool, widely known as AVISPA, to analyze
and verify the security specification of SPARDA. We also conduct
an experimental study to evaluate the performance of SPARDA by
comparing with benchmark methods. The experimental results
indicate that not only does SPARDA protect IoT networks from
malicious gateway attacks, but it also outperforms existing
schemes in terms of computation and storage overheads while
satisfying all critical security and privacy criteria.

Index Terms—RPL, Internet of Things (IoT), Data Aggrega-
tion, Secure and Privacy-Preserving, Malicious Gateway

I. INTRODUCTION

With the latest breakthroughs in wireless communication,
mobile/edge computing, and machine learning technologies,
the Internet of Things (IoT) [1] has gotten into a new period
of vigorous advancement in the 21st century’s third decade.
The inherent ability to interconnect thousands or even millions
of smart electronic devices to the Internet has made the IoT
become one of the most crucial technology of modern society.
For instance, currently no corner of the earth is immune from
the destructive consequences of environmental degradation [2].
The IoT sensors with remote monitoring capability can assist
with announcing water level and flood advisories, and predict
other natural disasters such as landslides and earthquakes
in prone areas, helping the corresponding authorities take
prompt action to save lives. Amid all the impactful emerging
technologies (e.g., artificial intelligence, 5G and connectivity

technologies), the future of IoT is undoubtedly promising and
something to look forward to.

A typical IoT system is composed of networked intelligent
devices that use equipped processing and sensing units to
collect, analyze, and transmit data they acquire from the sur-
rounding environment [3]. To ensure the success of various IoT
applications, routing plays a key role in efficiently managing
data acquisition and transmission. In recent years, developing
appropriate and energy-saving routing protocols for resource-
restricted IoT devices and networks remains an active field
of research, and attracts significant attention from commercial
enterprises and technical communities, e.g., Internet Engineer-
ing Task Force (IETF) [4], Cisco [5], etc. In 2012, the IETF
published a standard of routing protocol for IoT networks,
commonly referred to as RPL [6]. Following the release of
RPL, it quickly became a de-facto routing protocol for IoT
applications such as precision agriculture, waste management
and control, marine organisms exploitation, etc [7].

The RPL routing protocol brings many new features, such
as automatic pathway discovery, network topology adaptation,
cycle-free routes establishment, independent routing structure
construction, etc [8]. Although the standardization of RPL
has continued to mature and improve over the past few
years, its development is still in primary stage, and it is
optional to enforce certain security controls as the standard
mentions [9]. As you can easily imagine, the IoT networks
running RPL without proper security mechanisms might be
vulnerable to devastating routing-related cyberattacks, which
can compromise data security and privacy [10]. First, the IoT
devices are often used in critical applications such as military
defense systems, and the observations from the devices should
be protected from eavesdropping and falsification. Second,
from the privacy point of view, the IoT data might be analyzed
in detail to derive additional private/sensitive information.
For instance, the IoT smart meters are deployed to record
daily consumption of electric energy and power status of
households. The electricity data of households, if it is exposed
to unintended or unauthorized individuals, might be used for
criminal activities [11]. With access to the electricity data of
households, cyber attackers could conclude that nobody is at
home if the daily electricity consumption of a household is
comparatively low and stable. Thus, protecting data security
and privacy has become the most crucial factor in determining
the success of RPL-based IoT systems [12].

Recently, some scholars have chosen to apply end-to-end



cryptographic methods [13], [14] to preserve data privacy and
protect data content from eavesdroppers and hackers. Unfortu-
nately, the cryptographic methods will cause a rapid increase
in the size of transmitted data and communication overhead. In
order to keep data confidential while reducing communication
overhead, researchers have thought about data aggregation
techniques [15], [16] for IoT systems, where the IoT gateway
combines the observations from IoT devices and sends the ag-
gregated report to the back-end server. Obviously the implicit
assumption of these data aggregation techniques is that the
IoT gateway operates as a verified trust anchor who will act
legitimately as specified in the protocol. However, this overly-
idealistic assumption conflicts with the reality of the newly
emerging cyber threat environment, where the IoT gateway
could be compromised as well due to the lack of necessary and
persistent physical and/or logical security protection [17], [18].
Consequently, the adversary IoT gateway has a high capacity
to learn and manipulate the observations from IoT devices, and
then compromise the entire application. Therefore, there is an
extremely urgent need to not only provide necessary security
and privacy for IoT device observations, but also protect IoT
systems from malicious gateway attacks.

In this paper, we concentrate on the problem of mali-
cious gateway to protect resource-restricted IoT networks
running RPL routing protocol, and propose a secure and
privacy-preserving data aggregation approach, called SPARDA.
SPARDA is realized with physical unclonable function, ho-
momorphic encryption, and trapdoor function, and is per-
fectly integrated with the RPL routing protocol to prevent
the malicious IoT gateway from either accessing, falsificat-
ing, or corrupting the IoT device observations during the
data collection and aggregation process. In order to show
that the proposed security approach is capable of operating
safely in the adversarial environment, we implement SPARDA
in HLPSL formal language [19], and execute the HLPSL
program with the automatic security protocol analysis and ver-
ification tool AVISPA [20]. We also implement SPARDA and
a couple of benchmark methods in Python 3, and conduct an
extensive simulation-based experimental study on a Raspberry
Pi 4 Model B. Based on the results of security verification
and performance evaluation, we conclude that not only does
SPARDA protect 10T networks from malicious IoT gateway
attacks, but it also outperforms existing schemes in terms of
computation and storage overheads while meeting all salient
security and privacy requirements.

The remainder of this paper is structured as follows. In
Section II, the existing data aggregation schemes are reviewed.
Section III outlines the system and adversary models, along
with the associated security and performance requirements. In
Section IV, we introduce the proposed security approach. The
security verification and analysis are provided in Section V.
We describe the experimental study in Section VI, followed
by the conclusion in Section VIIL

II. RELATED WORK

In [21], the authors attempt to address issues of illegal data

analysis that might compromise data confidentiality in the IoT-

assisted smart grid network by proposing a data aggregation
scheme with privacy preservation. The basic idea of their
solution is to assign a private key to each user so that s/he can
encrypt her/his private information. According to the evalua-
tion, the proposed approach shows promising results in terms
of security and performance. The authors in [22] propose an
user characteristics based electricity data aggregation scheme
for outsourced smart grid networks, where the fog server
conducts data aggregation operation based on the pre-defined
rules. They argue that the proposed approach can realize
the fine-grained data analysis and aggregation. However, the
protection of fog server is overlooked in their approach. Once
the fog server is compromised by attackers, the entire smart
grid system will fail. In addition, the aforementioned data
aggregation schemes are not designed with consideration of
any routing mechanism, thus, they might not be integrated
with RPL routing protocol properly.

In [23], a message aggregation protocol is proposed for
vehicular ad hoc networks, where the aggregation operation
is executed at the cluster head as well as the road side unit.
First, the cluster head combines traffic messages based on their
category and sends the combined report to the road side unit.
Second, the road side unit aggregates all received reports from
cluster heads within its region and produces a global aggre-
gated report. However, two major drawbacks require further
discussion. First, it is very challenging to maintain the stable
clusters as the vehicles have high mobility. Second, forming
and maintaining clusters will incur high communication over-
head in vehicular ad hoc networks. The authors in [24] design
a data authentication and aggregation scheme for intelligent
healthcare systems. In their approach, the patient and the
aggregator first perform mutual authentication and negotiate
a confidential session key. After that, the aggregator combines
all patients’ health data based on information prioritization.
Based on their findings and assessment, although it fulfills the
necessary security requirements, the proposed scheme results
in high computational overhead because of the adoption of
elliptic curve cryptography and identity-based encryption.

In [25], the authors focus on generic resource-constrained
devices and networks, and propose a privacy-preserving data
aggregation protocol. Their approach relies on a trusted exe-
cution environment to perform heavyweight operations. Here,
the trusted execution environment is regarded as a computer
executing code on the processor. A primary limitation of their
approach lies in the fact that the data aggregator has to be
equipped with specific processor so that it can provide data
aggregation service. In [26], a homomorphic encryption based
data aggregation mechanism is proposed for IoT systems. The
basic idea is that the user will decide whether to enable privacy
encryption feature or not before submitting his/her data. With
the assistance of fog devices, the centralized server is able to
obtain the aggregated data of users.

In [27], an data aggregation mechanism, called One-Short,
provides different chirps to distinctive LoRa devices for the
encryption of their data. The fundamental idea of the One-
Short is to investigate the periodicity of superimposed chirp
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Fig. 1. System model.

signals and calculate the aggregate data using various aggrega-
tion functions. The aggregate data calculated by the gateway
will provide a brief summary of sensor data across an extensive
monitoring region. As there may be a potential suitability
issue between LoRa and RPL [28], thus, the One-Short which
is designed based on LoRa might not be suitable for RPL
routing protocol. A fog computing assisted data aggregation
approach is proposed for medical IoT applications in [29],
where the fog node collects the encrypted data (homomorphic
encryption) from medical devices and combines them using
proxy re-encryption. The proposed approach has two major
drawbacks. First, it does not offer physical security protection
in the system, where the compromised medical devices can
send false data to contaminate the aggregated report at the fog
node. Second, the fog node is considered to be completely
trustworthy in the system, which might not be true in the
present cyber threat landscape.

In summary, one aspect missing in contemporary theory is
a data aggregation approach that is capable of collecting and
consolidating IoT devices’ observation with cryptographically
sound, resource-efficient, and privacy-aware operations as well
as thwarting malicious gateway attacks within IoT systems
employing the RPL routing protocol. This study’s key contri-
bution is the development of a novel data aggregation protocol
against malicious IoT gateway, which opens up a promising
research path within the field of IoT.

III. SYSTEM AND ADVERSARY MODELS
A. System Model

With the emergence of Internet of Things (IoT) technology,
heterogeneous IoT devices are becoming increasingly common
because of their small size and low cost. Since IoT devices
operate under strict limitations regarding computation, stor-
age, and power supply, the communication links in the IoT
networks exhibit reduced data transmission rates and high
probabilities of channel errors. Considering the inherent limi-
tations in computational and communication resources within
IoT networks, the RPL routing protocol [6] has emerged as a
robust solution for efficient data collection and dissemination.

As shown in Fig. 1, the RPL routing protocol organizes
IoT devices into a multi-level branching architecture, and this
architecture is formally referred to destination oriented di-
rected acyclic graph, also abbreviated as DODAG. A DODAG
includes an IoT gateway along with a group of IoT devices.
Here, the major responsibilities of IoT gateway are to collect
the observations from IoT devices, combine them into an
aggregated observation report, and submit the report to the

control center through the Internet. For certain IoT applications
such as building automation system [30], the total number of
IoT devices (e.g., at least 2,000) can be organized into several
DODAG:ES (e.g., the IoT devices on the same floor will be orga-
nized into one DODAG). For simplicity, one DODAG is shown
in Fig. 1. To facilitate efficient IoT device observation collec-
tion and IoT gateway control message dissemination, the RPL
routing protocol supports three communication paradigms:
device-to-device, gateway-to-device, and device-to-gateway.
Using the device-to-gateway communication paradigm as an
illustrative example, if there is a direct communication channel
between an IoT device (e.g., n1) and the IoT gateway, the IoT
device can wirelessly transmit its observation directly to the
IoT gateway. If the direct communication channel is absent, the
IoT devices (e.g., n4 and ng) can choose to send observations
to their preferred parents (e.g., n; is the preferred parent of ng,
ng is the preferred parent of ng). The observation recipients
will continue relaying observations to their preferred parents
until the observations arrive at the IoT gateway. For instance,
as shown in Fig. 1 a set of IoT devices D = {n1, no, «--,
ng} are deployed in an area of interest to frequently collect
and send observations to the IoT gateway. Upon receiving
the observations from all IoT devices within its DODAG, the
IoT gateway compresses the observations into an aggregated
report. Subsequently, the IoT gateway sends the aggregated
report to the control center through wire-based communication
for further analysis. We assume that time synchronization has
been achieved between IoT devices and gateway.

B. Adversary Model

In this paper, we select a well-known Dolev—Yao (DY)
adversary model [31] to specify the behaviors of attackers.
Within the framework of the DY adversary model, the at-
tackers are able to perform man-in-the-middle attacks, where
wireless communication channels are no loner safe and could
be eavesdropped on. In addition, the attackers have the abil-
ity to transmit a corrupted, altered, replayed, or duplicated
message to either IoT device or gateway. Since the IoT
devices are usually deployed in a hostile and unattended
area, the attackers might find an opportunity to approach
and gain access to IoT devices. However, if the attackers
plan to physically compromise IoT devices, e.g., probing
integrated circuits of IoT devices, their evil intention will
not succeed. This is because the malicious probing operations
will inevitably change the physical properties of integrated
circuits of IoT devices as well as the PUF challenge-response
mapping relationship. As a result, the IoT devices are unable to
restore the same PUF response with the same PUF challenge,
and the cryptographic keys built upon the PUF responses
cannot be properly recovered. Moreover, the focus of this
paper is to defend against malicious IoT gateway. Thus, we
assume that the [oT devices are honest and trusted. As for
the IoT gateways, they might be compromised due to the lack
of necessary and persistent physical and/or logical security
protection. Consequently, the attackers can learn and falsify
IoT device observations for malicious purposes.



C. Security Requirements

SPARDA is designed to meet the heart objectives of 10T sys-
tems [32]: authentication, confidentiality, and integrity. From
the legitimate IoT gateway point of view, only authenticated
IoT devices are allowed to submit their observations along
with valid identity verification information. The attackers
cannot pretend to be any legitimate IoT device. Since the
10T device observations are transmitted over wireless medium,
they should be protected from malicious eavesdropping and
falsification. Even though the attackers can compromise the
IoT gateway, they cannot illegally manipulate either IoT device
observations or aggregated observation report. Any manip-
ulation on individual IoT device observation or aggregated
observation report should be detected by the control center.

IV. THE PROPOSED SECURE AND PRIVACY-PRESERVING
DATA AGGREGATION APPROACH

In this section, we provide the design details of our se-
cure and privacy-preserving data aggregation approach, called
SPARDA, for IoT devices and networks running the RPL
routing protocol. SPARDA is realized with the integration of
physical unclonable function [33], homomorphic encryption
[34], and trapdoor function [35]. The basic idea of SPARDA
is that the control center initializes the IoT system through
establishing and releasing key system variables and their
respective functions. After that, the IoT devices and gateway
register themselves with the control center to obtain their
cryptographic credentials. Finally, the IoT devices submit
their observations to the IoT gateway that will combine all
observations into an aggregated observation report and send it
to the control center. To put it succinctly, SPARDA consists of
four phases: (A) system initialization; (B) device registration;
(C) observation aggregation; and (D) aggregation verification.

A. System Initialization

The objective of system initialization phase is that the
control center C finalizes the system parameters and functions,
and shares them with IoT devices and gateway in the DODAG.
The procedure is outlined below:

1) C arbitrarily selects three large prime numbers, p, ¢, and
U.

2) C generates a cyclic group G with the prime order v and
two generators g and v (g € G and v € G).

3) C calculates n = pq and v = Ilem(p—1, g—1), and
selects another generator z € Z),. Here, lcm is the
least common multiple function, which finds the smallest
positive integer that is evenly divisible by p—1 and ¢—1.

4) C defines a secure hash function H: {0, 1}* = G, aran-
dom number function f,: G x G — Z7, and a function
fo(x) = . Here, fy(x) is a function commonly used
in pallher cryptosystem and some other homomorphic
encryption schemes.

5) C shares {u, G, g, v, H, fa, n, z} with IoT devices and
gateway, but saves {p, g, v} securely.

B. Device Registration

The objective of device registration phase is that the IoT
devices register with the control center C to obtain their cryp-
tographic credentials. Without loss of generality, we denote an
IoT device as d;. The following are the specific steps involved:
1) d; arbitrarily selects a random number r; € Z} and a
PUF challenge che;.

2) d? calculates its PUF response res; = f;u f(chei), where
Jpuy 1s the PUF of d;.

3) d; computes its private key and public key as pr; = fo (7,
res;) and pu; = g’ € G, respectively.

4) d; randomly chooses two numbers e;, t; € Zj,, and
calculates a trapdoor hash value b = g% pu,ti.

5) d; deletes pr; and res; but stores 7;, che;, €; and t; in
the memory, and then sends {d;, pu;, htmp } to C over
a secure channel.

6) C arbitrarily selects a random number d* € G and a
random number k; € Zj,. d} is the secret identifier of d;.

7) C calculates 3; = ¢g* and B = (dF || DAG*) - pu;*
Here, DAG™ is the secret DODAG identifier and shared
with all IoT devices securely during the system initial-
ization phase.

8) C sends {f;, 87} to d;. d; can decrypt {8;, 3} as d? ||

DAG* = Bf - (B;)"P" with pr; and DAG™*.
df || DAG* = B} - (B;)P"
= (di || DAG") - pul i (—pri)
= (d} || DAG™) - gP"ihi . ghi(=pme)
= (dj || DAG™) g kipri | _(kz pr;)
— (d || DAG") - ¢°
=d; || DAG™.
DAG*

9) C calculates w = g and stores the entry of d;, {d;,
pui, hi"P, d*

; *, w}, in the database.

C. Observation Aggregation

The objective of observation submission is that the IoT
devices encrypt their observations with cryptographic creden-
tials and send them to the control center C. Without loss of
generality, we denote the IoT device d;’s observation at the
time ts as of®. Here is a step-by-step breakdown:

1) d; calculates res; = f;u s(che;) with che; and f;;u s> and

then restores pr; = f,(r;, res;) with res; and r;.

2) d; computes t; = fo(d}, ts) and s; = pry - (t; — t;) +e;
(mod u).

3) d; arbitrarily selects a random number ¢; € Z, and
calculates y; = 20 . e mod n?

4) d; calculates 1; = (H(d || ts) - goe mod ! i°)pAGT,

5) d; sends an observation packet pkt!* = {d;, s;, yi, Vi,
ts} to the IoT gateway GW.

6) After receiving observations from all IoT devices in the
DODAG, GW calculates s* = ZNI s; mod u, y*
[TY, v mod n2, and ¢* = [[,, v;, where N is the
total number of IoT devices in the DODAG.

7) GW sends the aggregated observation report pkttGSW =

{GW, s*, y*, *, ts} to C.



D. Aggregation Verification

The objective of aggregation verification phase is that the
control center C' verifies and accesses the aggregated obser-
vation report. Below is a detailed sequence of actions:

1) C use the secret identifier of an IoT device, e.g., d; for
IoT device d;, to calculate t = f,(d}, ts).

2) C validates all observations based on the following,
1Y, hirer Zg [T, pu;® . If the above validation
succeeds, C proceeds to decrypt the encrypted aggre-
gation observation report. Otherwise, it terminates the
aggregation verification phase.

N

trap _ s
[ =
i=1

N
SN s; mod u tr
— g i=1 "7 . Hpul i

i=1

N

o

i=1

ZN (pT'-t' _ pT'-t/. + e.) N
= g2i-1 it it i 'Hpui
=1
N
!
- ngzl(wm — prit; + ei) | Hgm
i=1
( ) N , N
_ pri-t; + e; —prit; Tit
_ = Tlo Lo
=1 i=1
_ gZ (PTL i+ 61')

—gz (pnt’)-g 7N1( )
N
e
i=1 i=1
3) C obtains the encrypted aggregation observation report y*
(fb(y*7 mod nQ) / fb(z"’ mod ng)) mod n.
Here, the received combined ciphertext is decrypted using

fv, which helps to map the result back to the plaintext
space.

as o*® =

fb((HzJ'V:1 y; mod n*)Y mod n2)
o= mod n
fb(z“/ mod n?)

( - ) mod n?)Y mod n2>
fb(Z'V mod n?) mod n
fb( [T, &) mod n2>
fb(z"f mod n?) mod n
fb( " mod n?) - (va e mod n )) -

(27 mod n?)
~ fo(z°7 mod n?)
— f(27 mod n?)

_ Ots

mod n

4) C validates the following, 1", ¢) = e(]_[Z L Hd; |
ts) - g° "0 s w) If the above validation succeeds, C

accepts the aggregated observation report. Otherwise, it
terminates the aggregation verification phase.

N
i=1
N ts\ DAG™
= e(JJ(H(dil[ts) - g* ™" ™ - 0°F) :9)
i=1
N .
— é(H(H(dthS) g% mod u _,.0; )7gDAG )
i=1
N t
= ([T (H(dlts) - g° ™" - v*"),w)
i=1
N N
= HH ||ts) - H simod w T 407" ap)
i=1 i=1

N N _ts
.~ Si mod u > i, 0;
i=1°1 . 1%
? v ,’LU)

- é<H H(di||ts) - g%
=1
N .
= ([ H(dillts) - g°" - 0"
=1

V. SECURITY VERIFICATION AND ANALYSIS

;W)

In this section, we aim to prove that the design of SPARDA
meets the pre-determined security specifications. First, we uti-
lize AVISPA [36], which is an automated security verification
tool, to examine SPARDA for any potential security design
flaws and vulnerabilities. Second, we conduct an informal
security analysis to demonstrate that SPARDA can securely
exchange messages in the adversarial environment.

A. Security Verification using AVISPA

In this subsection, we verify our approach SPARDA using
AVISPA. Here, AVISPA is a push-button security verification
tool that is widely employed to examine the security require-
ments of communication protocols. The goal of this security
verification is to show that SPARDA can safely operate in
the adversarial settings and does not have any security design
flaws and vulnerabilities. To achieve this goal, SPARDA is first
implemented in High-Level Protocol Specification Language
(HLPSL) to model the communication pattern of IoT devices,
gateway, and control center. AVISPA employs two back-ends,
On-the-Fly Model Checker (OFMC) and Constraint-Logic-
based Attack Searcher (CL-AtSe), to analyze the operations
of communication protocols. OFMC serves a purpose in
inspecting the state space of a communication protocol and
is suitable for detecting security vulnerabilities concerning
integrity, confidentiality, and authentication. Speaking of CL-
AtSe, it is useful for translating a communication protocol
into a set of constraints for threat modeling. In the HLPSL
implementation of SPARDA, we define three roles (or entities),

e., IoT device, gateway, and control center, and message
exchanges are modeled among these roles, as shown in Fig.
2. The values for pkt!* and pkt!s. . as illustrated in the
text, encapsulate nonces and exponents following AVISPA’s



role A role B roleC role B role C role A roleC
device 3 gateway 4 controlcenter 5 gateway 8 controlcenter 9 device 11 controlcenter 13
Pkt = di, si, yi, pifts Step 1
pktE, = GW,s",y" yf', ts Step 2

pkt{S = nonce-2.inv(pubA.nonce-1.nonce-11).{exp(nonce-6,nonce-9).exp(nonce-7,nonce-8)}_inv(pubA).exp(h(nonce-2.nonce-3).exp(nonce-

4,inv(pubA.nonce-1.nonce-11)).exp(nonce-5,nonce-9,nonce-10).nonce-3

pktéiw =nonce-13.inv(pub.nonce-12.nonce-21).{exp(nonce-16,nonce-19).exp(nonce-17,nonce-18)}_inv(pubB).exp(h(nonce-2.nonce-3.exp(nonce-

14,inv(pubB.nonce-12.nonce-21)).exp(nonce-15,nonce-19),nonce-20).nonce:

-22)

Fig. 2. Communication sequence diagram of AVISPA security verification.
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Fig. 3. Security verification results using AVISPA.

formal syntax. Furthermore, auxiliary roles such as intruder,
session, goal, and environment are also defined in the HLPSL
program as they collectively assist with examining the security
design of SPARDA. Finally, we execute the HLPSL program
in AVISPA within Virtual Box [37] on Ubuntu 10.04. The
results obtained from the security verification in AVISPA are
given in Fig. 3. As shown here, SPARDA is a sound security
protocol and does not exhibit any security design flaws and
vulnerabilities that could be exploited by adversaries. The
Python and HLPSL programs of SPARDA are available at
https://github.com/congpu/SPARDA.

B. Resilience and Immunity Analysis Against Various Attacks

In this subsection, we analyze SPARDA against various
cyber attacks such as device impersonation attack, replay
attack, device capture attack, and observation modification
attack.

1) Device Impersonation Attack: When the control center
C receives the aggregated observation report pkt’gw, it first
verifies the identity of IoT devices using the trapdoor function,
ie., TIv, hire® L g 1Y, pu;'. The adversary would
never be able to generate s; without the valid private key pr;.
In addition, the adversary would not be able to retrieve the
secret s; even though he/she gets a hold of pr;. This is because
s; depends on the random number ¢;. If the identity validation
succeeds, C proceeds with decrypting the aggregated observa-
tion report, otherwise, it terminates the aggregation verification
phase. Thus, SPARDA is resilient against device impersonation
attack.

2) Replay Attack: In SPARDA, the aggregated observation
report pktthW is piggybacked with the current system time

ts. When the control center C' receives pktgw, It can veriféf
whether pkttGSW is fresh. If pktgw is indeed obsolete, C
will discard it. Otherwise, C' will proceed with validating the
identity of IoT devices. In summary, our protocol SPARDA is
immune to replay attack.

3) Device Capture Attack: Assume that an adversary has
successfully obtained a legitimate IoT device d;. Through a
probing attack, the adversary might be able to retrieve the
critical information from d;’s memory such as random num-
bers r;, e;, and t;, as well as d;’s PUF challenge che;. With
the above critical information, the adversary might attempt to
generate d;’s PUF response res;. However, this attempt would
fail because even a slight change to the integrated circuit of
d; would destroy its PUF mapping. Furthermore, since the
PUF response res; is required to generate d;’s private key pr;,
the adversary would not be able to create a valid message to
communicate with the IoT gateway GW. Finally, since every
IoT device has a unique challenge-response pair, capturing a
single device would be a pointless endeavor. Thus, SPARDA
is secured against device capture attack.

4) Observation Modification Attack: When the [oT gateway
GW sends the encrypted observation report pk;ttcjw to the
control center C’, C validates pktthW with é(y*, g) S é(]_[f\il
Hd; || ts) - gs*vots, w). Here, the properties of bilinear
pairing ensure that both sides of the equation are equal only
if the correct secret credential, i.e., s*, is used. Since s* is
inherently tied to the IoT device d;’s private key, the adversary
would not be able to generate the valid s* without pr;. Hence,
when C validates pktté"’w from GW , it ensures that pktg"’w has
not been modified maliciously. Additionally, the observation
report ol is hidden by the generator z in y;, and the use of
the random number c' guarantees randomness. This design
ensures that each encryption is unique, even for the same
observation. Moreover, this randomness makes it extremely
difficult for an adversary to predict or modify the message
without d;’s private key pr;. In a nutshell, SPARDA is resilient
against observation modification attack.



Fig. 4. Experimental setup.
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Fig. 5. Running time performance under varying numbers of algorithm
executions and IoT devices.

VI. PERFORMANCE EVALUATION

To evaluate the performance of SPARDA, we carry out
extensive simulated experiments on a Raspberry Pi 4 Model B
which is used to mimic general-purpose [oT devices operating
with constrained processing capabilities, restricted memory,
and limited energy availability. The Raspberry Pi 4 Model B
has a Quad core Cortex-A72 (ARM v8) 64-bit processor and
4GB LPDDR4-3200 memory, and runs Debian 10 operating
system. Here, the experimental setup is shown in Fig. 4.
For comparative performance analysis, we select two relevant
and advanced data aggregation schemes, LVPDA [38] and
PPMDA [39], as benchmark methods. Here, the LVPDA is a
data aggregation method that integrates paillier homomorphic
encryption with an online/offline signature mechanism. The
basic idea of the PPMDA is to aggregate multidimensional
data with a distributed decryption technique.

First, we obtain the running time of SPARDA, LVPDA, and
PPMDA under varying numbers of algorithm executions and
IoT devices and present the results in Fig. 5. In short, running
time refers to the amount of time either SPARDA, LVPDA,
or PPMDA takes to complete its execution, based on the size
of its input (e.g., the numbers of algorithm executions or IoT
devices). As can be clearly observed in Fig. 5(a), the overall
running time for the three approaches exhibits growth as the
number of algorithm executions is increased from 2 to 10.
However, the running time of our protocol SPARDA is the
least among all approaches. This is because SPARDA em-
ploys lightweight operations such as homomorphic encryption,
trapdoor function, along with physical unclonable function to
realize the verification of the aggregated observation report
without the need to validate the identity and observation report
of IoT devices separately. The LVPDA has a higher running
time than our protocol SPARDA because it has each IoT device
send its online/offline signatures to the edge server. The edge
server then proceeds to verify the correctness of the received
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Fig. 6. CPU time performance under varying numbers of algorithm executions
and IoT devices.
signatures, thereby increasing the overall running time. The
PPMDA records the longest running time compared to the
other two approaches because aggregation is performed on
multidimensional data. With the multidimensional data, mul-
tiple measurements can be embedded into a single ciphertext.
However, this approach increases the size of the ciphertext,
which eventually leads to increased running time. Moreover,
since the PPMDA does not employ a trusted authority (TA),
each entity has to decrypt the ciphertext all by oneself, which
causes an increase in running time. Likewise, the running
time of SPARDA, LVPDA, and PPMDA with respect to the
number of IoT devices ranging from 40 to 120 is shown in
Fig. 5(b). As the IoT device count escalates, the PPMDA has
more entities to cooperate in distrusted decryption and the
LVPDA generates more individual signatures for verification,
both of which contribute to a longer running time. Our protocol
SPARDA continues to outperform both LVPDA and PPMDA.

Second, we investigate the CPU time of SPARDA, LVPDA,
and PPMDA by changing the numbers of algorithm executions
and IoT devices in Fig. 6. CPU time refers to the actual amount
of time the CPU spends actively executing the operations of ei-
ther SPARDA, LVPDA, or PPMDA. As illustrated in Fig. 6(a),
the CPU time of the PPMDA is the highest among the three
protocols. This is because the PPMDA operates with mul-
tidimensional ciphertexts and requires distributed decryption
across entities. As a result, the highest CPU time is observed.
The LVPDA has a relatively lower CPU time compared to
the PPMDA. The rationale is that the LVPDA utilizes more
lightweight operations than the PPMDA. However, the LVPDA
still shows a higher CPU time than our protocol SPARDA
because it requires each IoT device to sign the report and
forward it to the edge server for verification. In our protocol
SPARDA, 10T devices do not need to send their signatures
to the IoT gateway. In addition, the identity and aggregated
observation report verification occurs via trapdoor function
and PUF. Thus, SPARDA shows the lowest CPU time. In Fig.
6(b), we measure the CPU time of SPARDA, LVPDA, and
PPMDA while changing the number of IoT devices from 40 to
120. Consistent with prior results, all three approaches exhibit
linear growth in CPU time while the number of IoT devices
is increased. However, our protocol SPARDA still achieves
the best performance due to the adoption of homomorphic
encryption along with trapdoor function and PUFs.

Third, we examine the storage overhead of SPARDA,
LVPDA, and PPMDA in Fig. 7, where the number of IoT
devices is changed from from 40 to 120. Here, storage
overhead refers to the memory space either SPARDA, LVPDA,



30

20

Storage Overhead (MB)

.80 PPMDA
Number of Devices

SPARDA
Fig. 7. Storage overhead performance under varying numbers of IoT devices.

or PPMDA requires in the Raspberry Pi 4. It can be seen
from Fig. 7 that the PPMDA requires the largest amount of
memory space to operate. This is because that the PPMDA
stores large ElGamal ciphertexts, each of which comprises
two group elements per value. Moreover, in the PPMDA
distributed decryption requires each entity to store public keys
as well as partially decrypted values for decryption, which
causes an increase to storage overhead. The LVPDA also has
a higher storage overhead than our protocol SPARDA due to
the need to store offline signature states for each IoT device. In
addition, the edge server needs to buffer and execute the offline
verification algorithm for each IoT device after receiving the
offline tags. This also causes an increase in memory usage.
On the contrary, our protocol SPARDA utilizes a trapdoor
function and a lightweight pairing check to verify the identity
of IoT devices and aggregated observation report, instead
of generating large ciphertexts or storing additional protocol
states.

Lastly, we evaluate the energy consumption of SPARDA,
LVPDA, and PPMDA by varying the numbers of algorithm
executions and IoT devices in Fig. 8. Here, the solid bar
area reflects the growth in energy consumption when the
number of algorithm executions is increased by 1 and the
number of IoT devices is increased by 10 in Fig. 8(a) and
Fig. 8(b), respectively. General speaking, energy consumption
refers to the amount of electrical energy (joule) used by the
computational processes required to execute either SPARDA,
LVPDA, or PPMDA. Compared to SPARDA and LVPDA, the
PPMDA exhibits greater complexity due to its operational
logic and multidimensional data, which causes an increase
in the size of ciphertexts. As a result, executing the rele-
vant operations would consume more energy. Moreover, the
distributed decryption technique used across multiple entities
without the assistance of a trusted authority (TA) leads to
more energy consumption. The LVPDA shows a higher energy
consumption than our approach SPARDA because of a greater
number of data transmissions among IoT devices. In the
LVPDA, since each IoT device transmits its report along with
its digital signature, the edge server needs to retrieve the
stored cryptographic information and verify each IoT device
using its stored offline signature state. Our protocol SPARDA
demonstrates minimal energy usage. This is because SPARDA
uses lightweight operations like homomorphic encryption and
trapdoor function along with PUFs, making it consume less
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energy for secure data aggregation and verification.
VII. CONCLUSION

In this paper, we proposed a secure and privacy-preserving
data aggregation scheme, called SPARDA, against malicious
gateways in RPL-based Internet of Things (IoT) systems.
In SPARDA, 10T devices send their observations to the IoT
gateway which will aggregate all observations into an ag-
gregated observation report and send it to the control center.
SPARDA is constructed with homomorphic encryption, physi-
cal unclonable function, and trapdoor function and integrated
with the RPL routing protocol to prevent the malicious IoT
gateway from either accessing, falsifying, or corrupting the
real-time data from IoT devices throughout the data gathering
and summarization phase. We employed AVISPA to assess
SPARDA’s security-related design features and conducted an
informal security analysis. The security verification and anal-
ysis have proved that our protocol SPARDA can safely operate
in the cyber-threat environments and is secure against various
cyberattacks. In addition, we implemented SPARDA along with
two benchmark methods and carried out extensive experiments
on a Raspberry Pi 4. The comprehensive simulation results
show that SPARDA outclasses its peer methods in terms of
computation and storage overheads while meeting all salient
security and privacy requirements.

For future work, we plan to integrate SPARDA with
blockchain technique for trust evaluation. First, the trust-
worthiness of IoT devices will be evaluated based on their
observations (e.g., data accuracy and uptime) using machine
learning algorithms (e.g., random forest and long short-term
memory), and then securely stored on a private blockchain
(e.g., hyperledger fabric blockchain) to ensure data integrity
and tamper resistance. Second, a smart contract is specifically
designed to validate trust scores and identity suspected ad-
versarial IoT devices. Finally, the adversarial IoT devices are
added into the revocation list by revoking their cryptographic
keys, which ensures that adversarial IoT devices are blocked
from reentering the network. In this way, a decentralized and
tamper-proof trust management framework can be built to
protect RPL-based IoT systems.
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