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Abstract—As drones are becoming an indispensable part of
society, the idea of Internet of Drones (IoD) has became a
commercial reality. In the IoD framework, drones are dispatched
to incessantly collect target information in the task region,
and intermittently report the observations to a nearby ground
station. Then, the ground station summarizes and combines drone
observations to reduce the amount of data transmission before
sending them to the data requester. As for IoD applications,
however, the drones’ observational data usually include target’s
and/or nearby entity’s private information. Thus, the privacy
of target and/or nearby entity might be accidentally disclosed
at the ground station during the data aggregation process. To
address the privacy leakage issue, this paper proposes a privacy-
preserving and fault-tolerant data aggregation protocol (hereafter
referred to as PriTAP) for IoD systems. In the PriTAP, after
receiving all drones’ observational data, the ground station first
checks and detects the corrupted observational data due to
bad wireless channels, and then decrypts the sum of all valid
observational data. During the process of data aggregation,
however, the ground station cannot access any individual drone’s
observational data. We perform security verification in the
AVISPA environment, where the PriTAP has been proved to be
safe and reliable in the adversarial setting. We also conduct
extensive performance evaluation to validate the performance
of PriTAP. Experimental results demonstrate that the PriTAP not
only provides low computational cost, but also efficiently detects
corrupted observational data.

Index Terms—Internet of Drones, Privacy Leakage, Data
Aggregation, Secure, Privacy-Preserving, Fault Tolerance

I. INTRODUCTION

With significant technological advances in lithium-ion bat-
tery technology, ultra-dense microchip, and carbon fiber com-
posites, drones become increasingly affordable and applicable
in diverse civilian and commercial settings [1]. According
to the research report from ‘‘Drone Industry Insights’’ [2],
the commercial drone market is forecasted to be worth an
approximate $56 billion in 2030. In a short time, various
stunning applications of drone technology such as drone light
show, public space observation and guidance, and so on have
spread rapidly around the globe. For example, during the 2022
FIFA World Cup, the night sky of Doha has been lit up by
80 LED-mounted drones, seamlessly morphing into several
World Cup-inspired visuals. As the Internet of Things (IoT)
technology continues to mature, there have been tremendous
efforts to replace stationary ‘‘things’’ with mobile ‘‘drones’’ in
the recent past. Consistent efforts have successfully produced
Internet of Drones (IoD) [3], a revolutionary aerial-ground
communication framework.

Fig. 1. IoD architecture and example applications. Zone 1: traffic surveillance;
Zone 2: sport & entertainment; Zone 3: industrial plants monitoring; and Zone
4: precision agriculture.

In the IoD framework, drones, IoT devices, as well as
communication infrastructures interconnect through various
types of connection in a way that enables effective information
gathering, sharing, and processing. To be specific, as shown
in Fig. 1, the IoD framework virtually partitions airspace
(or geographical area) into task zones. In each task zone,
there is one or multiple ground stations which communicate
with nearby drones for task-specific operations (e.g., retrieving
traffic information or collecting data from ground IoT de-
vices). With the prevalence of advanced wireless connectivity
technologies, it is anticipated that the vast array of valuable
IoD applications (e.g., insurance claim, precision agriculture,
etc.) will emerge and become a reality [4]. Compared to its
ancestor, vehicular networks, where the movement of vehicles
is constrained by the road network, the drones in the IoD
systems are endowed with greater freedom of movement
(mandatory prerequisite: comply with the relevant rules/laws).
In addition, the drones’ activity arena is the airspace. Thus,
the roadway safety can be improved as the vehicular traffic
is transferred to the sky (i.e., Pfizer uses drones to deliver
COVID-19 vaccines in African countries [5]).

Although there are apparent benefits of such a revolutionary
framework, some challenges deserve engineers’ full attention
and scientific input from academic researchers. The IoD is a
generic architecture where security and privacy are not built-in
properties but added on as an afterthought. Thus, a plentiful of
security and privacy attacks attempt to exploit this design flaw
against the IoD systems and achieve the adversarial objectives
[6]. Taking drone-assisted autonomous driving as an example,
drones are deployed to take images and videos which are used
to detect far-away objects for autonomous driving vehicles to
operate safely [7]. However, the images and videos captured
by drones might be misused to identify, locate, and track
pedestrians, which violates the privacy of pedestrians.979-8-3503-8211-2/23/$31.00 ©2023 IEEE
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Over the last couple of years, several authentication proto-
cols [8]–[11] have been studied to secure the data exchange
between an individual drone and the ground station in the
IoD systems. However, these schemes either do not perform
data aggregation at the ground station or adopt complex
operations to fulfill the security and privacy requirements.
Data aggregation currently is still an under-explored area in
the IoD domain, however, a few data aggregation schemes
[12]–[14] have been investigated in vehicular networks. These
schemes apply message compression and/or duplicated data
reduction techniques to realize the reduction of communication
overhead, but they are incapable of achieving fault tolerance
during the process of data aggregation. In addition, these
schemes are not privacy preserving because the individual
vehicle-collected data has to be accessible/visible for the
operations of data aggregation. Thus, what has been missing in
the IoD community is a data aggregation protocol that adopts
resource-friendly computing operations to achieve privacy-
preserving data aggregation with the detection capability of
corrupted drone observation. The realization of such an ap-
proach would be unprecedented because the similar technique
is not currently available in the IoD community, and the
proposed work will fill this research gap.

Inspired by the above discussion, in this paper we propose a
privacy-preserving and fault-tolerant data aggregation protocol
(hereafter referred to as PriTAP) for IoD systems. The basic
idea of PriTAP is that the ground station takes advantage
of private stream aggregation mechanism [15] to decrypt
the sum of all drones’ observational data, but is unable to
regain any individual drone’s observational data. In addition,
the PriTAP endows the ground station with the ability to
detect the corrupted drone observation due to bad wireless
channels and aggregate all valid observational data. To verify
the safety of PriTAP, we choose the High-Level Protocol
Specification Language (HLPSL) [16] to implement PriTAP
and perform a safety verification in the Automated Validation
of Internet Security Protocols and Applications (AVISPA)
environment [17]. The outputs of AVISPA has proved that
the PriTAP is a safe and reliable security protocol under
adversarial conditions. We also conduct extensive performance
evaluation to validate the performance of PriTAP. Extensive
experimental results demonstrate that the PriTAP not only
provides low computational cost, but also efficiently detects
corrupted observational data.

The rest of the paper is organized as follows. We review
the existing literature in Section II. System and adversarial
models, and the protocol objectives are provided in Section
III. In Section IV, we present the data aggregation protocol.
Section V demonstrates the process of security verification
and analysis. We conduct an experimental study and analyze
the results in Section VI. Finally, we conclude the paper in
Section VII.

II. RELATED WORK

Even though data aggregation has not been explored in the
IoD domain, some work has been done in other environments.
The authors in [18] use drones as aerial base stations to

aggregate the collected data from ground IoT devices when
the service of existing communication infrastructure is not
available. However, their research mainly focus on the trajec-
tory optimization of drones, rather than the data aggregation
technique. In [19], the authors study the scheduling issue
of data collection/aggregation in wireless sensor networks,
where a latency-optimized scheduling scheme is proposed to
collect different types of data. They also take into account
data collision when aggregating the sensory data, however,
the privacy of sensory data is not protected by the approach.
An encrypted data aggregation mechanism is proposed for
smart grid network in [20], where the gateway router groups
the encrypted energy consumption data. In [21], the authors
propose a privacy-preserving data aggregation scheme for
mobile crowdsensing environment, where the additive secret
sharing technique is adopted to protect data privacy. The above
two [20], [21] are promising approaches to realize the data
privacy, but they fail to guarantee the device’s identity privacy.

The researchers in [22] design an anonymous aggregation
authentication protocol for safety early warning system in
vehicular networks. The protocol is able to aggregate vehicles’
signcrypted warning messages into an aggregated ciphertext
and restore warning messages all together. In [23], the en-
crypted data from sensor nodes in the IoT networks are
aggregated by the aggregators before sending to the server.
Nevertheless, if the message/data is corrupted, the protocol
in [22], [23] is unable to detect the error and recover the
rest of correct messages/data. The authors in [24] focus on
data aggregation in the maritime transportation system, where
the maritime sensors are deployed to collect and aggregate
the local marine information. Then, the collected data are
encrypted and finally transmitted to the server. However, the
major drawbacks of the above approach is that the data privacy
and the error detection are not considered at all.

Over the past several years, authentication and key agree-
ment protocols have been investigated for IoD systems. In [25],
the authors adopt federated learning technique to train deep
neural network model with the radio frequency of drones and
achieve mutual authentication between the ground station and
the drones. The advantage of using federated learning is that
it is unnecessary to synchronize the system setting between
drones and the ground station. The authors [26] design a
group authentication protocol for drone networks, where the
new drone is verified by the group leading drone before
it can join the drone network and communicate with other
drones. In [27], a delegation based authentication scheme is
proposed for device-to-device networks, where the drone uses
its proxy signature to authenticate itself with other drones in
the network. The authors in [28] develop a handover authenti-
cation mechanism so that the performance of handover process
can be improved when the vehicular platoon changes the
contact point of aerial networks in space-air-ground integrated
vehicular networks. However, all the abovementioned studies
fail to suggest the security solution through which a group of
encrypted data can be securely and privately aggregated.

To sum up, what has been lacking in the current theory is a
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Fig. 2. System model.

data aggregation protocol that can aggregate drones’ encrypted
data with resource-friendly and privacy-preserving computing
operations as well as detect any corrupted data due to bad
wireless channels. The major contribution of the proposed
research is that it is the first privacy-preserving and fault-
tolerant data aggregation protocol for IoD systems, and will
suggest a new research direction for the IoD community.

III. SYSTEM AND ADVERSARIAL MODELS & OBJECTIVES
OF THE PROTOCOL

A. System Model

The system model is portrayed in Fig. 2, where there are
three major participants: control center, ground station, as
well as drones. The control center is a trusted participant; it
registers each drone through exchanging critical information
for the calculation of drone’s private key and pseudonym.
After enrollment, a batch of drones are dispatched to collect
target information in the task region, and periodically report
the encrypted observational data to a nearby ground station.
In order to avoid storing secret information (e.g., private key)
in the memory directly, the integrated circuits of drones are
produced with physical unclonable functions (PUF) primitive
[29], and the secret information can be restored via PUF
when needed. Since drones might be operating in a rugged
environment, the encrypted observational data is highly likely
to be corrupted due to bad wireless channels. After receiving
the encrypted observational data from drones, the ground
station will decrypt the sum of all uncorrupted observational
data and transmit them to the control center over the secure
channel. In this paper, the ground station is also considered as
a trusted participant.

B. Adversarial Model

The well-known Dolev-Yao threat model [30] is considered
in the system. According to the Dolev-Yao threat model, the
external adversary aims to eavesdrop the wireless communi-
cation between the drones and the ground station to access
drones’ observational data. In addition, the external adversary
is able to capture the drone using special equipment and
attempts to maliciously compromise the drone. However, this
malicious attempt will inevitably change or even destroy the
PUF, as a result, an invalid PUF-based secret information (e.g.,
the pseudonym of drone) will be generated. Therefore, we

TABLE I
NOTATIONS

Notation Meaning
G Cyclic additive group
P An arbitrary generator of G
q Large prime order of G
Ha(·) Secure hash function, Ha:{0,1}∗ → G
Hb(·) Secure hash function, Hb:{0,1}∗ → Z∗

q

Di Drone Di

RIDi Drone Di’s real identity
chei Drone Di’s PUF challenge
Fpuf (·) PUF
resi Drone Di’s PUF response
ri Random number generated by drone Di

PIDi Drone Di’s pseudonym
H(·) Secure hash function, H:{0,1}m and m ∈ Z
si Random number generated by control center for Di

n The number of registered drones
PAk The kth drone pairing
PAk

xy Drone pair {Dx, Dy} in PAk

PRx Drone Dx’s private key
PRk

xy PAk
xy pairing key in PAk

tj The jth periodic interval
di[tj ] Drone Di’s observational data in tj
c
tj
i Ciphertext of di[tj ]
D[tj ] The sum of all drones’ observational data in tj

assume that the interval adversary (i.e., compromised drone)
does not exist in the system. In summary, the goal of the
external adversary is to obtain access to drones’ observational
data as well as disrupt the data aggregation operation. The
external adversary might launch other cyber attacks, e.g.,
flooding attack [31], however, they are outside the scope of
this paper.

C. Objectives of The Protocol

We identify the following security and performance objec-
tives to be met by the proposed protocol: (i) Confidentiality:
The drone’s observational data is unintelligible to the external
adversary; (ii) Anonymity: The drone uses the pseudonym,
rather than the real identity, for the communication with the
ground station; (iii) Privacy Guarantee: The individual drone’s
observational data is not visible to the ground station; (iv) Data
Aggregation: The ground station can decrypt the sum of all
uncorrupted drones’ observational data; (v) Fault Tolerance:
The ground station can detect the corrupted drone observation
and still aggregate all uncorrupted drone observations; and (vi)
Computational Complexity: The computational complexity of
the proposed protocol is lower than existing schemes.

IV. THE PROPOSED DATA AGGREGATION PROTOCOL

In this section, we describe the proposed privacy-preserving
and fault-tolerant data aggregation protocol, which we refer
to as PriTAP in the following. In the PriTAP, the drones
collect target information, encrypt the observational data with
their private keys, and report the encrypted data to the ground
station. Taking advantage of private stream aggregation mech-
anism [15], the ground station is able to decrypt the sum of
all drones’ observational data, but does not have access to
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any individual drone’s observational data. If the ground station
fails to obtain the aggregated observational data, it will execute
the error detection algorithm to detect the corrupted drone
observation, and then aggregate all uncorrupted observational
data. In summary, the PriTAP is composed of six phases: (i)
initialization; (ii) drone registration; (iii) arbitrary pairing; (iv)
data encryption; (v) data aggregation; and (vi) error detection.
Table I lists all notations used in this paper.

A. Initialization Phase

In this phase, the control center initializes public system
parameters and functions in the following steps:

1) The control center chooses a cyclic group G of the large
prime order q with an arbitrary generator P .

2) The control center chooses two secure hash functions
Ha and Hb, where Ha:{0,1}∗→ G and Hb:{0,1}∗→
Z∗
q .

3) The control center advertises all public system parame-
ters and functions as {G, q, P , Ha, Hb}.

B. Drone Registration Phase

In this phase, the control center registers the drone Di in
the following steps:

1) The drone Di chooses its real identity RIDi and PUF
challenge chei.

2) The drone Di feeds chei into its PUF Fpuf (·) to compute
the corresponding PUF response resi = Fpuf (chei).

3) The drone Di generates a random number ri and cal-
culates its pseudonym PIDi = H(RIDi ∥ resi ∥ ri),
where H:{0,1}m is a set of fixed length (saying m bits)
strings.

4) The drone Di shares (RIDi, PIDi, resi, ri) with the
control center via a secure channel.

5) The control center generates and shares a random num-
ber si with the drone Di via a secure channel.

6) The drone Di stores {RIDi, chei, ri, si} in the memory.
7) The control center stores {RIDi, PIDi, resi, ri, si}.

C. Arbitrary Pairing Phase

In this phase, the control center arbitrarily pairs all reg-
istered drones φ times. Here, we assume that the number
of registered drones is an even number n. A dummy drone
is added if the actual number of registered drones n is an
odd number. In the kth (1 ≤ k ≤ φ) drone pairing PAk, the
underlying steps will be executed:

1) The control center arbitrarily selects two drones, Dx and
Dy , and makes a pair PAk

xy = {Dx, Dy}.
2) The control center calculates the private key PRx and

PRy for the drone Dx and the drone Dy respectively,
PRx = Hb(resx ∥ rx ∥ sx) and PRy = Hb(resy ∥ ry
∥ sy).

3) The control center generates the pairing key PRk
xy ∈ Z∗

q

so that PRk
xy + PRx + PRy = 0 mod q, and shares

PRk
xy with the ground station via a secure channel.

4) The control center performs the above three steps for
all n

2 pairs, where each pairing key PRk
xy is associated

Fig. 3. Privacy-preserving and fault-tolerant data aggregation protocol, where
solid arrow lines indicate secure channel and dash-dotted line represents
insecure channel.

with PAk
xy ∈ PAk. For the kth drone pairing PAk, it

is easy to obtain PRk +
∑n

x=1 PRx = 0 mod q, where
PRk =

∑
PAk

xy∈PAk PRk
xy mod q.

5) The control center shares all φ drone pairings PA1, PA2,
PA3, · · · , PAφ with the ground station via a secure
channel. Note that any drone pair {Dx, Dy} should be
different in all φ drone pairings.

D. Data Encryption Phase

In this phase, the drone Di reports its observational data
di[tj ] to the ground station in the jth periodic interval tj in
the following steps:

1) The drone Di calculates the PUF response resi =
Fpuf (chei) with the PUF challenge chei.

2) The drone Di computes the private key PRi = Hb(resi
∥ ri ∥ si).

3) The drone Di encrypts the observational data di[tj ] with
PRi to produce the ciphertext ctji = gdi[tj ] · Ha(tj)

PRi .
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4) The drone Di reports c
tj
i to the ground station via an

insecure wireless channel.

E. Data Aggregation Phase
In this phase, the ground station decrypts the sum of

all drones’ observational data D[tj ] received during the jth

periodic interval tj as follows:

D[tj ] =

n∏
i=1

c
tj
i ·Ha(tj)

PRk

= g
∑n

i=1 di[tj ] ·Ha(tj)
PRk+

∑n
i=1 PRi

= g
∑n

i=1 di[tj ] ·Ha(tj)
0

= g
∑n

i=1 di[tj ].

Here, 1 ≤ k ≤ φ, PRk =
∑

PAk
xy∈PAk PRk

xy mod q, and
PRk +

∑n
i=1 PRi = 0 mod q. The value of

∑n
i=1 di[tj ]

can be easily obtained through the brute-force search [15].
Since drones might be operating in a rugged environment,
the ciphertext ctji is highly likely to be corrupted due to bad
wireless channels. As a result, the ground station is unable
to obtain the sum

∑n
i=1 di[tj ] because

∑n
i=1 di[tj ] cannot be

separated from
∏n

i=1 c
tj
i ·Ha(tj)

PRk

. In that case, the ground
station will execute the error detection algorithm to detect the
corrupted observational data.

F. Error Detection Phase
The basic idea of error detection algorithm is to use φ drone

pairings PA1, PA2, PA3 · · · , PAφ to detect the corrupted
observational data. First, for each drone pair PA1

xy = {Dx,
Dy} in the 1th drone pairing PA1, the ground station tries to
decrypt the sum of their observational data dx[tj ] and dy[tj ]

with the ciphertext ctjx and c
tj
y as well as the pairing key PR1

xy

according to the following,

dx,y[tj ] = ctjx · ctjy ·Ha(tj)
PR1

xy

= gdx[tj ]+dy [tj ] ·Ha(tj)
PR1

xy+PRx+PRy

= gdx[tj ]+dy [tj ] ·Ha(tj)
0

= gdx[tj ]+dy [tj ].

Here, the value of (dx[tj ] + dy[tj ]) can be easily obtained
through the brute-force search [15]. If the ground station is
able to obtain the result of (dx[tj ] + dy[tj ]), the ciphertext ctjx
and c

tj
y are believed to be valid. Otherwise, either ctjx or ctjy , or

both of them are corrupted. After verifying all n
2 drone pairs

in the 1th drone pairing PA1, the ground station can filter out
all corrupted drone pairs (e.g., assume to be w pairs, where 1
≤ w ≤ n

2 ). Second, for all w invalid drone pairs in PA1, the
ground station verifies each suspected drone’s observational
data in the pair with the remaining φ - 1 drone pairings
PA2, PA3, · · · , PAφ. If the ground station cannot decrypt
the suspected drone’s ciphertext on all φ - 1 drone pairings,
the suspected drone’s ciphertext is believed to be corrupted.
Otherwise, the suspected drone’s ciphertext is valid. Third, for
all valid drones’ ciphertexts, the ground station decrypts the
sum of their observational data. The major operations of error
detection algorithm are summarized in Algorithm 1.

Algorithm 1: Error Detection Algorithm
Input: PA1, PA2, PA3 · · · , PAφ, Ctj

/* PAi: the ith drone pairing */
/* φ: the total number of drone pairings */
/* Ctj: the set of encrypted observations */
/* ICtj: the set of invalid encrypted

observations */
/* tj: timestamp */

1 Function DetectInvalidCipherPair(PA1, Ctj):
2 for i← 1 to n

2
by 1, w ← 0, ICtj ← ∅ do

/* the ith drone pair PA1
xy in the 1th

drone pairing PA1
*/

3 if (dx[tj ] + dy [tj ]) is obtainable then
/* the drone Dx’s and Dy’s

ciphertext is c
tj
x and c

tj
y */

4 both c
tj
x and c

tj
y are valid;

5 else
/* either c

tj
x or c

tj
y , or both are

invalid */

6 ICtj ← ICtj ∪ c
tj
x ∪ c

tj
y ;

7 end
8 end
9 Function DetectInvalidCipher(ICtj , w, PA2, · · · , PAφ):

/* for each drone whose cipher is in ICtj */
10 for i← 1 to |ICtj | by 1 do
11 flag ← true;

/* the remaining φ - 1 drone pairings,
PA2, PA3, · · ·, PAφ

*/
12 for k ← 2 to φ by 1 do

/* dx[tj ] belongs to a drone in the new
pair in the PAk

*/
13 if (di[tj ] + dx[tj ]) is obtainable then
14 c

tj
i is valid;

15 ICtj ← ICtj − c
tj
i ;

16 flag ← false;
17 break;
18 else
19 continue;
20 end
21 end

/* di[tj ] and any other drone’s data are
not obtainable in all φ - 1 drone
pairings */

22 if flag is true then
23 c

tj
i is corrupted;

24 end
25 end
26 Function AggregateValidCipher(Ctj , ICtj):
27 decrypt the sum of all valid ciphertexts in (Ctj - ICtj );

V. SECURITY VERIFICATION

If the security protocol has potential design flaws or vulner-
abilities, it might become a target in the cyber attacks (e.g.,
masquerading attacks or replay attacks) where the adversary
attempts to compromise the objectives of security protocol.
In order to prove that the PriTAP does not have any design
flaw or vulnerability, AVISPA [17] is chose for security
verification. Here, AVISPA is a specific security protocol and
application verification tool that can automatically analyze
the behaviors of protocol and application and validate their
security features. Moreover, AVISPA will also verify whether
the protocol and application can function securely even under
worst-case adversarial environments. AVISPA provides two
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(a) (b)

Fig. 4. Security verification results using AVISPA’s CL-AtSe and OFMC.

evaluation components: On-the-fly Model-Checker (OFMC)
and Constraint-Logic-based Attack Searcher (CL-AtSe). Spe-
cially, OFMC evaluates the security protocol through falsifi-
cation and bounded verification. CL-AtSe is able to deal with
algebraic properties of cryptographic operators and associa-
tivity of message concatenation, as well as detect type-flaw
attacks. The first step of conducting security verification in
AVISPA is to implement the security protocol and application
in HLPSL [32] which is a AVISPA-specific programming lan-
guage. After that, AVISPA will evaluate the security protocol
and application under masquerading attacks, replay attacks,
and other unknown attacks. If the security protocol and
application are vulnerable to a specific attack, AVISPA will
output a sequence diagram showing the vulnerable scenario.
Otherwise, the security protocol and application are marked
as ‘‘safe’’ by AVISPA. The experiments are conducted in
Virtual Box [33], where we set up and configure a fully-
functional SPAN+AVISPA [32] environment. The outputs of
OFMC and CL-AtSe are shown in Fig. 4, where we can
easily observe that the PriTAP is identified as a safe security
protocol. Meanwhile, we also can conclude that the PriTAP
does not have any design flaws or vulnerabilities that could be
exploited by masquerading attacks, replay attacks, and other
unknown attacks.

VI. PERFORMANCE EVALUATION

In this paper, we build a simulation-based experimental
environment within Eclipse [34] and conduct extensive exper-
iments to evaluate the performance of PriTAP. Specifically,
we install Eclipse on a Windows desktop computer, imple-
ment PriTAP and benchmark schemes in Java programming
language. The desktop computer runs Windows 10 Pro 64-bit
operating system with the 4th Generation Intel(R) Core(TM)
i5-4690K CPU (6M Cache, up to 3.90 GHz). For performance
comparison and analysis, we select two benchmark schemes,
SATS [23] and SETCAP [10]. The basic idea of SATS is
that the IoT devices send the ciphertext of observational
data to the aggregation node. After receiving all ciphertexts
from IoT devices, the aggregation node simply concatenates
all ciphertexts and forwards the aggregated message to the
server. Finally, the server separately decrypts each aggregated
message and restores the observation data from IoT devices. In

TABLE II
COMMUNICATION OVERHEAD

Scheme No. of Transmitted Msg Communication Energy Cost
SATS∗ 48 5.465597×10−3

SETCAP⋄ 120 13.66399×10−3

PriTAP‡ 40 4.554664×10−3

∗: The SATS requires each IoT device to send one (1) message pig-
gybacked with the encrypted data to the aggregation node and each
aggregation node to forward one (1) aggregated message to the server.
Here we assume that there are eight (8) aggregation nodes.
⋄: The SETCAP exchanges two (2) messages to negotiate a secret session
key between the drone and the ground station, and uses one (1) message
to submit the observational data.
‡: The PriTAP only needs one (1) message transmitted from the drone
to the ground for the submission of encrypted observational data. The
messages sent in the phase of drone registration and arbitrary pairing are
not counted because they are transmitted via secure channel (e.g., physical
medium). Note that the messages exchanged during the preparation phase
of SATS and SETCAP are not counted either.

Fig. 5. The performance of detection rate of corrupted data against the channel
error rate.

the SETCAP, the ground station first shares credentials with
each drone, and then assigns them a set of distinct data to
collect. Before transmitting data, the drone will authenticate
with the ground station and establish a data type specific
session key through message concatenation, hash function, and
XOR operation. Since the SETCAP does not originally support
data aggregation, we implement them to decrypt the encrypted
data, and then aggregate plaintext data.

In terms of performance metrics, we consider communi-
cation overhead, execution time as well as CPU time. Since
the simulation-based experiments are conducted on a single
machine and actual wireless communication between different
entities are not simulated, thus, the communication overhead
is represented as the number of transmitted messages and the
energy consumption of message transmissions [35]. Moreover,
the execution time is expressed as the amount of elapsed time
from when the scheme begins running to when the scheme
finishes running. Finally, the CPU time is the amount of time
for which the CPU was busy with the operations of algorithms.
For our scheme PriTAP, we also obtain the detection rate of
corrupted data.

First, we measure the communication overhead in terms of
the number of transmitted messages and the communication
energy cost for SATS, SETCAP, as well as PriTAP in Table. II.
In this experiment, we assume forty (40) drones are dispatched
to collect target information in the task region, and report
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Fig. 6. The performance of execution time against the number of drones.

the observations to either the ground station or the user.
In the SATS, the IoT devices send one (1) message to the
aggregation node. And then, the aggregation node forwards the
aggregated message to the server. Thus, a total of 48 messages
are transmitted by 40 drones to submit their observational
data to the server. As for the SETCAP, it exchanges two (2)
messages to negotiate a secret session key between the drone
and the ground station, and uses one (1) message to submit the
observational data. In such a way, 40 drones will need a total of
120 messages to submit their observational data to the ground
station. For our scheme PriTAP, only 40 messages are required
for a group of 40 drones to submit their observational data to
the ground station over an insecure channel. Specifically, in the
data encryption phase, the drone encrypts the observational
data with its private key and sends it to the ground station.
Since each drone only requires one message to submit the
observational data, 40 drones will transmit 40 messages to the
ground station. We also calculate the communication energy
cost for SATS, SETCAP, as well as PriTAP. The SETCAP
consumes the largest amount of energy because it requires the
largest number of messages to submit all drones’ observational
data. The SATS has a higher communication energy cost
than our scheme PriTAP because it transmits more messages.
Our approach PriTAP only consumes 4.554664×10−3 (joule)
because the smallest number of messages are generated and
transmitted.

Second, we measure the detection rate of corrupted ob-
servational data with varying channel error rate in Fig. 5.
Since drones might be operating in a rugged environment, the
encrypted observational data is highly likely to be corrupted
due to bad wireless channels. In order to detect the corrupted
observational data, we design an error detection algorithm
where the ground station will filter out all corrupted drone
pairs with the 1th drone pairing. After that, the ground station
verifies each drone in all suspected drone pairs with the re-
maining drone pairings. Since the corrupted observational data
cannot be decrypted with any other encrypted observational
data, it can be successfully detected after verifying all drone
pairings. A shown in Fig. 5, the detection rate of corrupted
observational data can be 100% in the PriTAP, which is
consistent with our theoretical analysis result.

Third, we measure the execution time of three schemes by

Fig. 7. The performance of CPU time against the number of drones.

changing the number of drones in Fig. 6. In this experiment,
we assume that no encrypted observational data is corrupted
during the transmission. Since the SETCAP only creates a
secret session key between the communication entities, we
choose Blowfish [36] symmetric cipher to encrypt the obser-
vational data which will be used for data aggregation. For
the SATS, we also let IoT devices encrypt the observational
data with Blowfish symmetric cipher. Overall, the execution
time of SATS, SETCAP, and PriTAP increase as the number
of drones increases. As for the SETCAP, each drone requires
a secret session key to encrypt the observational data. When
the ground station receives the encrypted observational data,
it needs to perform decryption to retrieve the original obser-
vational data. Thus, when the number of drones increases,
the number of authentications, session key establishments,
as well as observational data encryption and decryption will
increase correspondingly. As a result, the execution time of
SETCAP increases. Since the SATS performs data aggregation
on the encrypted observational data, thus, it observes a smaller
execution time than the SETCAP. However, compared to our
scheme PriTAP, the SATS still provides higher execution
time because of frequently executing Blowfish encryption
algorithm. The execution time of PriTAP is lower than that
of SATS and SETCAP. This is because the PriTAP verifies the
identity of drone when the ground station performs the data
aggregation. If the drone is not the authenticated entity with
the pre-established secret key, its encrypted observational data
cannot be decrypted. Since there is no dedicated authentication
and key establishment process, a less amount of execution
time is observed. In addition, the PriTAP will perform the
data aggregation with all encrypted observational data, rather
than decrypting each encrypted observational data and com-
bining them together. Thus, the PriTAP outperforms SATS and
SETCAP in terms of execution time. When the number of
drones increases, the PriTAP will need more time to perform
data aggregation on more encrypted observational data. An
increasing execution time is observed for the PriTAP as the
number of drones increases.

Finally, we measure the CPU time with varying number
of drones in Fig. 7. In this experiment, we assume that no
encrypted observational data is corrupted during the transmis-
sion. As the number of drones increases, the CPU time of
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SATS, SETCAP, and PriTAP also increase accordingly. This
is because more drones will cause more authentications and
submit more encrypted observational data to the user or the
ground station. Thus, the user or the ground station has to
perform more decryptions and aggregate more observational
data, as a result, more CPU time will be required by each
scheme. However, the lowest CPU time still belongs to the
PriTAP. In the PriTAP, the ground station will aggregate all
encrypted observational data together, instead of decrypting
and combining each observational data. Thus, a lower CPU
time is obtained by the PriTAP.

VII. CONCLUSION

In this paper, we proposed a privacy-preserving and fault-
tolerant data aggregation protocol (also called PriTAP) for
IoD systems, where the communication security and data
privacy are being addressed simultaneously. The basic idea
of PriTAP is that the ground station first detects the corrupted
observational data due to bad wireless channels after receiving
all drones’ observational data, and then decrypts the sum
of all valid observational data. During the process of data
aggregation, however, the ground station cannot access any
individual drone’s observational data. To evaluate its security
performance, the PriTAP was first implemented in the security-
sensitive protocol modeling language and evaluated using the
AVISPA framework. Finally, we implemented the PriTAP
and two benchmark schemes, and conducted experimental
simulation to evaluate their performance. Our experimental
results indicate that the PriTAP not only provides superior
computational cost performance, but also efficiently detects
corrupted observational data.
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