
On Evacuation Assisting Vehicular Ad Hoc Networks

by

Cong Pu, B.S.

A Thesis

In

COMPUTER SCIENCE

Submitted to the Graduate Faculty

Of Texas Tech University in

Partial Fulfillment of

the Requirements for

the Degree of

MASTER OF SCIENCE

Approved

Dr. Sunho Lim

Chair of Committee

Dr. Noe Lopez-Benitez

Dominick Casadonte

Dean of the Graduate School

August, 2013

Copyright 2013, Cong Pu

 Texas Tech University, Cong Pu, August 2013

ii

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Dr. Sunho Lim, for his continuous

support during my Master’s studies. He was always there to listen and to give advice.

He has taken pains to go through my thesis and make necessary suggestions as and

when needed.

Besides my advisor, I would like to thank my thesis defense committee

member Dr. Neo Lopez-Benitez, for his kind co-ordination and his valuable time.

I would also like to thank my parents for constantly encouraging me in tough

situations throughout my Master’s Degree. Last but not least, I also owe sincere thanks

to my girlfriend for her understanding and support.

 Texas Tech University, Cong Pu, August 2013

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ii

ABSTRACT ... iv

LIST OF FIGURES ..v

I. INTRODUCTION ...1

II. BACKGROUND AND RELATED WORK ..3

 2.1 Evacuation Route Planning and Routing ...3

 2.2 Vehicular Ad Hoc Networks Assisted Evacuation ..4

III. THE PROPOSED EVACUATION-ASSISTING VEHICULAR AD HOC

NETWORKS ...6

 3.1 System Model ..6

 3.2 Least Travel Time-based Shortest Path ...7

 3.3 V2I and V2V Communications Assistance..9

IV. PERFORMANCE EVALUATIONS ..11

 4.1 The Simulation Testbed ...11

 4.2 Simulation Results ...11

V. CONCLUSION AND FUTURE RESEARCH DIRECTION16

REFERENCES ..17

APPENDIX ..19

 Texas Tech University, Cong Pu, August 2013

iv

ABSTRACT

Recent natural and man-made disasters such as Hurricane Sandy (2012) and

the Fukushima nuclear power plant (2011) make efficient evacuation route planning

and routing more important than ever. A conventional sign-based evacuation route and

its information are limited to use in a life-threatening environment. In this paper, we

first investigate a least travel time based shortest path approach to minimize the

evacuation time in a Vehicular Ad hoc Network (VANET). Since the travel time

changes in the presence of time-varying traffic congestions, frequent and timely

updates of the shorted path during the evacuation period are essential. Thus, we also

investigate the evacuation assisting VANET to efficiently update the shortest path on

wheel by deploying vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V)

communications. Then we propose VANET assisting schemes, V2RSU and

V2RSU+V2V. We also implement the shortest path based schemes to work in

VANETs, Upperbound and W/O Update. We compare the performance of four

schemes as a function of network size and number of vehicles, sources, destinations,

and congestions. The simulation results indicate that the proposed schemes integrated

with a VANET can reduce the evacuation time significantly.

 Texas Tech University, Cong Pu, August 2013

v

LIST OF FIGURES

3.1 A graph representation of a subset of the transportation

network. ... 7

3.2 The pseudo code of the shortest path based on the least travel

time .. 9

3.3 Both V2I and V2V communications assist in updating the

shortest path .. 10

4.1 (a) Evacuation time against network sizes (4 congestions) 12

4.1 (b) Evacuation time against network sizes (8 congestions) 12

4.2 (a) Evacuation time against the number of vehicles (4

congestions) .. 13

4.2 (b) Evacuation time against the number of vehicles (8

congestions) .. 13

4.3 Evacuation time against the number of sources .. 14

4.4 Evacuation time against the number of destinations 14

4.5 Evacuation time against the number of congestions 15

Texas Tech University, Cong Pu, August 2013

1

CHAPTER I

INTRODUCTION

With increasing risks from natural and man-made disasters, efficient

evacuation plans play a critical role for life-saving in disaster and emergency

preparedness. For example, a tsunami caused by a 9.0 earthquake damaged three

nuclear reactors at the Fukushima Daiichi nuclear power plant in 2011. Over 170,000

people evacuated and dispersed from the surrounding areas [1]. Global warming

impacts the creation of super storms like Hurricane Katrina (2005), Rita (2005), and

Sandy (2012). Recently Hurricane Sandy affected the East Coast and 24 US states,

particularly damaging New York, which is the largest city in US, and required the

mandatory evacuations of over 375,000 people residing in seashore and low-lying

areas [2]. Although several US states (i.e., Louisiana, Mississippi, Florida, Texas, etc.)

primarily use a signed evacuation route, which simply shows a direction and radio

channels for information, its effectiveness is very limited in a life-threatening

environment.

For efficient evacuation route planning and routing, contraflow (or lane

reversal) based approaches have been investigated to increase outbound evacuation

route capacity and ultimately minimize the evacuation time. Researchers in academia

and the US Department of Transportation (US-DOT) have been investigating how to

operate and manage contraflow (i.e., changing or merging lanes and roads, controlling

traffic lights, etc.) for maximizing the utilization of already-built infrastructures [3],

[4]. On the other hand, [5], [6], [7], [8], [9], [10] propose diverse algorithms to find

evacuation routes with the minimized computation in the presence of multiple sources

(i.e., locations where evacuees evacuate from) and destinations (i.e., shelters where

evacuees drive to). In addition, an intelligent highway infrastructure is proposed to

support planned evacuations [11], where evacuation information can be disseminated

based on a Vehicular Ad hoc Network (VANET) via limited vehicle-to-infrastructure

(V2I) and/or vehicle-to-vehicle (V2V) communications. Note that since traffic

Texas Tech University, Cong Pu, August 2013

2

condition is often time-varying during an evacuation period, frequent and timely

updates of evacuation information to evacuees are critical.

In this paper, we investigate an evacuation assisting VANET to minimize the

evacuation time by efficiently updating the shortest path to the evacuation routes. A

VANET is an instance of a mobile ad hoc network (MANET) and consists of a set of

mobile vehicles equipped with computing and communication capabilities. A VANET

flexibly supports either V2I or V2V communications and it is well suited for

facilitating flexible accessibility and information availability. Due to rapid advances in

high speed wireless Internet, being on-line without interruption on wheel has been

already realized. Our contribution is two-fold:

• First, we model a transportation network as a graph form and investigate a least

travel time based shortest path approach to minimize the evacuation time in a VANET

environment. The proposed approach is extended by integrating with V2I and V2V

communications to further reduce the evacuation time.

• Second, we develop a customized simulator and implement the proposed shortest

path update schemes to work in VANETS: Upperbound, W/O Update, V2RSU, and

V2RSU+V2V.

An extensive simulation study has been conducted for multidimensional

analyses. We compare the performance of the schemes in terms of network size, and

number of vehicles, sources, destinations, and congestions. The proposed schemes

integrated with VANET, V2RSU and V2RSU+V2V, can reduce the evacuation time

significantly and are a viable approach for expediting the evacuation.

The rest of this paper is organized as follows. The prior study is reviewed and

analyzed in Section II. A system model and its assumptions and the proposed

communication protocols and techniques are presented in Section III. Section IV is

devoted to performance evaluation and analysis. Finally, we conclude the paper with

future directions in Section V.

Texas Tech University, Cong Pu, August 2013

3

CHAPTER II

BACKGROUND AND RELATED WORK

In this section, we review and analyze prior algorithms and communication

protocols in evacuation route planning and VANETs, respectively.

2.1. Evacuation Route Planning and Routing

Due to the size of transportation network and its evacuation factors, heuristic

approach is often used to produce a suboptimal and efficient evacuation plan. Unlike

prior heuristic approach, calculating the shortest distance from a source to the closest

destination, time-varying route capacity constraints are considered to compute the

evacuation route in Capacity Constrained Routing Planner (CCRP) [5], [6], [7] and its

extension (CCRP++) [12]. In the CCRP, evacuees are divided into a set of groups and

each group is allocated to a route and time schedule based on its earliest arrival time to

the destination. Since the route capacity changes represented as a time-expanded

graph, a generalized Dijkstra’s shortest path search algorithm repeatedly calculates a

quickest route available to each group from all sources in each iteration. The CCRP++

does not use the time-expanded graph but reduces the number of shortest path search

operations by reusing the search results in previous iterations. [13] does not use the

time-expanded graph either but quickest paths are searched that can reduce the

evacuation time, instead of searching shortest path based on the travel time. In [9], a

scalable evacuation routing algorithm is proposed based on synchronized flows

instead of using the time-expanded graph. The synchronized flows are the path of

evacuees from sources to destinations and the evacuees are distributed over the paths

to have the same evacuation time. Virtual evacuees are also added to the synchronized

flows to make the evacuation time equal.

A good number of algorithms have been proposed for contraflow-aware

evacuation route planning to minimize the evacuation time by increasing outbound

evacuation route capacity. Researchers in academia and US-DOT have been focusing

on the operating and managing lanes and roads and controlling traffic lights [3], [4]

Texas Tech University, Cong Pu, August 2013

4

but they cannot flexibly incorporate with diverse evacuation factors and thus, efficient

contraflow road segments cannot be produced [14]. [8] defines the contraflow problem

based on graph theory and proposes two heuristic algorithms by considering road

capacity constraints, multiple sources, congestion factors, and scalability: Greedy and

Bottleneck relief. The greedy algorithm needs the flow history of the original network

to output a contraflow reconfigured network. The bottleneck relief algorithm only

needs the original network and produce a contraflow reconfigured network by using a

minimum cut. A contraflow evacuation routing algorithm is proposed based on reverse

shortest path and maximum throughput flow [10]. A single running of reverse shortest

path can provide a set of shortest paths from all sources to the destination and thus, the

path-finding time reduces. Then the proposed maximum throughput flow scheme

allocates as full as available route capacity into the shortest paths for minimum

evacuation time.

2.2. Vehicular Ad Hoc Networks Assisted Evacuation

In VANET, drivers can monitor/share real-time traffic condition, send/receive

Emergency Warning Messages (EWM), and avoid an accident, such as an intersection

collision or a chain collision. Diverse applications and operations built for VANETS

are available in both short and extended communication ranges. To realize and

disseminate these techniques, government, industry, and academic community have

been putting a lot of efforts on the combining wireless technologies with VANETs

[16], [17].

Based on the aforementioned computing and communication capabilities,

VANET has been integrated with evacuation process. An intelligent highway

infrastructure is proposed to support a planned evacuation [11] by embedding

piezoelectric pressure sensor belts in the road at regular intervals. Since traffic

condition is often time-varying during evacuation period, frequent and timely updates

of evacuation information to evacuees are critical. Vehicles communicate with the

belts by uploading and download traffic-related information. Roadside units (RSUs)

[18] or access points (APs) are combined with the belts. They can query vehicles for

Texas Tech University, Cong Pu, August 2013

5

the travel time and disseminate this aggregated information through the belts to the

vehicles as they pass over the belts. This infrastructure can also alert drivers for

incoming contraflows.

In VANET, the RSUs can play a key role in evacuation process by

disseminating information and assisting the communication between vehicles and the

Internet. Here, a RSU can be mounted on the top of a signal light, a road lamp, a gas

station, or an intersection, and it is connected with a wired network and operates as a

router for vehicles to connect the Internet. Compared to the 3G/4G and satellite

networks, the RSUs can provide location-dependent and real-time information with

high bandwidth and low cost. [18] proposes several scheduling schemes for data

access between vehicles and the RSUs. In [19], a data dissemination scheme is

proposed by periodically broadcasting data to the vehicles in the road. This scheme is

further improved by buffering and broadcasting data at/from the RSUs located at the

intersection so that vehicles isolated from others and later arriving vehicles can still

access available data.

In summary, relatively little effort has been made in developing

communication protocols and related techniques for assisting evacuation route

planning and routing in a VANET, which becomes critical in disaster and emergency

preparedness.

Texas Tech University, Cong Pu, August 2013

6

CHAPTER III

THE PROPOSED EVACUATION-ASSISTING VEHICULAR AD

HOC NETWORKS

In this section, we first present the system model and then propose a

communication protocol and algorithm for evacuation assisting VANETs.

3.1. System Model

In VANET, vehicles are powered by their own built-in battery and execute

computing and communicating operations without concerning of energy conservation.

Vehicles are equipped with communication facilities such as an IEEE 802.11-based

Dedicated Short Range Communication (DSRC) transceiver. Thus, vehicles can

communicate with other vehicles and the Internet flexibly through V2V or V2I

communications. In the V2V communication, vehicles can communicates with other

vehicles directly or indirectly through a multi-hop message relay without the

assistance of any fixed infrastructure, such as a RSU [18]. In the V2I communication,

however, vehicles are limited to a single-hop communication with a RSU. Bypassing

vehicles can pour their data into a RSU that can temporary store and forward it to the

following vehicles for improving data delivery. Vehicles also equip a built-in

navigation system integrated with a Global Positioning System (GPS), in which a

digital map is loaded to show the roads around the current location and direction, the

shortest path to the destination, and location-dependent information. Vehicles are

enable to monitor real-time traffic conditions, transceiver Emergency Warning

Messages (EWMs), and avoid accidents such as an intersection collision or a chain

collision. Due to high speed, vehicles may experience frequent disconnections or

isolations from the RSUs or other vehicles. The movement of vehicles is restricted by

underlying fixed roads with speed limits and traffic lights.

In Figure 3.1, a subset of transportation network is represented as a graph form

in terms of edge and vertex. In this paper, we consider a mesh network for the sake of

simplicity. A RSU can be located in an intersection for sharing traffic and evacuation

Texas Tech University, Cong Pu, August 2013

7

information. Evacuation routes are located at the bottom with the limited number of

entrance points. Upon evacuation, vehicles located in the multiple sources move to the

multiple entrance points. In addition, a macroscopic network flow model is deployed

to model the movement of vehicles, represented as a flow on the graph. This

macroscopic model is preferred because it is effective to represent most capacity of a

given transportation network such as road density, weighted mean speed, etc. [8].

Figure 3.1. A graph representation of a subset of the transportation network.

3.2. Least Travel Time-based Shortest Path

During the evacuation period, a set of evacuation routes and its related

information will be disseminated to vehicles through the 3G network. The information

at least contains state roads or interstate highways, their available entrance points, and

a set of destinations. Note that not all the entrance points may be available to vehicles

because lanes or roads can be changed or merged to expedite the evacuation.

Evacuation routes are calculated by recent evacuation route planning algorithms [8],

[9], [10], [12], [13] to achieve the minimized evacuation time in a given disaster area.

Since the algorithms consider diverse factors including road size, capacity, and

condition, contraflow, traffic condition, weather, etc., evacuation routes are often pre-

calculated in an off-line and ready for dissemination not to delay the evacuation. Thus,

evacuation routes are seldom changed or updated in a real-time fashion.

Texas Tech University, Cong Pu, August 2013

8

We first investigate how quickly each vehicle can reach to one of target

entrance points of the evacuation routes with the minimized evacuation time in a given

transportation network. Here, the evacuation time is measured from when a first

vehicle leaves a source to when a last vehicle arrives at one of entrance points of

evacuation routes. Any evacuation time elapsed after reaching the entrance point of

evacuation routes is not considered. In the transportation network, each road is

characterized by its road capacity (croad) and travel time (ttrav). The road capacity is

measured by the number of travel vehicles per a unit period. As shown in Fig. 1, when

the number of vehicles (nvehicle) located at source (s) moves to destination (d), the

evacuation time (tevac) is calculates by,

Under the macroscopic methodology, the road capacity can be modeled by two

methods: (i) continuous entering and (ii) occupy and empty [8]. In the continuous

entering method, the number of vehicles equal to the road capacity travels the road as

long as the road is available. In occupy and empty method, however, the number of

vehicles equal to the road capacity occupies the road for the travel time. During the

travel period, the road is not available to other vehicles. In this paper, we deploy the

continuous entering method because it represents the movement of vehicles more

realistic.

When a vehicle receives evacuation information, it sets up a path from the

current location to one of entrance points of the evacuation routes using a shortest path

algorithm. Here, a shortest path is displayed in a pre-loaded area map on wheel

navigation system. Because of diverse road capacities in the network, a shortest path

based on the physical distance between source and destination is not considered.

Instead, the least travel time will be considered by using the Dijkstra’s algorithm. The

pseudo code of the proposed shortest path algorithm is shown in Figure 3.2. The

algorithm is terminated as soon as the next vertex is a destination.

Texas Tech University, Cong Pu, August 2013

9

Figure 3.2. The pseudo code of the shortest path based on the least travel time.

3.3. V2I and V2V Communications Assistance

The aforementioned least travel time based shortest path is calculated once

before vehicles move to a destination. Then the path is never updated during the

evacuation period. One of implicit assumptions in this approach is that the travel time

is fixed. However, the travel time can frequently be changed during the evacuation

period because of traffic congestions. Thus, we also investigate how a VANET can

assist in calculating least travel time based shortest path and achieve the minimized

evacuation time in the presence of time-varying traffic congestions in a given

transportation network.

In VANET, vehicles can communicate with a RSU to update the shortest path.

A set of RSUs is installed in the intersections and plays a role as a gateway to the

Internet. We consider both V2I and V2V communications. In V2I communication, as

Texas Tech University, Cong Pu, August 2013

10

shown in Fig. 3, when a vehicle (i.e., np) is located in the communication range of a

RSU, it sends a Request message piggybacked with recorded travel times to the RSU.

Upon receiving the message, the RSU replies an Update message containing updated

travel times in the transportation network. Then the vehicle can recalculate a shortest

path from the current location to the destination based on the updated travel times. The

vehicle will replace the pre-calculated shortest path with the updated path, if the travel

time can be reduced. A possible drawback of this approach is that if a vehicle does not

meet any RSU during the evacuation period, it cannot update the shortest path. To

increase the chance of updating the shortest path, V2V communication is also

considered in which vehicles located far away from a RSU can still update their

shortest path through multi-hop relays. In Figure 3.3, when a vehicle (i.e., nq) is

approaching to a RSU, it can receive an Update message from the RSU after two hop

relays. Thus, the vehicle can update its shortest path and avoid traffic congestions

early.

Figure 3.3. Both V2I and V2V communications assist in updating the shortest path

Texas Tech University, Cong Pu, August 2013

11

CHAPTER IV

PERFORMANCE EVALUATIONS

4.1. The Simulation Testbed

In this paper, we develop a customized simulator to conduct our experiments.

We use a simple mesh network to model a transportation network. A set of mesh

networks are deployed by changes network size, where a set of vehicles is allocated to

multiple sources located in the middle of network. Two evacuation routes with

multiple entrance points are located in the top and bottom of the network, respectively.

Upon evacuation, vehicles move to one of entrance points of evacuation routes based

on the least travel time in the presence of traffic congestion. We measure the

evacuation time by changing the number of sources, destinations, vehicles, and

congestions to measure the evacuation time. The simulation parameters are

summarized in Table 4.1.

Table 4.1. Simulation Parameters

4.2. Simulation Results

To compare the performance of proposed approaches, we first evaluate an

ideal case where there is no traffic congestion. This case will achieve the minimum

evacuation time based on the shortest path and it is used as the performance upper

bound. It is denoted as Upperbound. Second, we consider a case where each vehicle

follows its initial shortest path without update during the evacuation period in the

presence of traffic congestion. It is denoted as W/O Update. Third, updating the initial

Texas Tech University, Cong Pu, August 2013

12

shortest path whenever possible via only V2I communication in a VANET is

considered and it is denoted as V2RSU. Finally, combination of V2I and V2V

communications are considered to update the shortest path directly or indirectly

through multi-hop relays, and it is denoted as V2RSU+V2V. Here, unless otherwise

specify, we use 8 sources, 4 destinations, 2,000 vehicles, and 4 or 8 congestions in the

network.

1) Impact of Network Size: In Figure 4.1, we first compare the evacuation time

by changing the network size and number of congestions. As the network size

increases, the evacuation time increases almost linearly. With more number of traffic

congestions, higher evacuation time is observed as shown in Figure 4.1(b) compared

to Figure 4.1(a). The W/O Update scheme shows the highest evacuation time for entire

network sizes because of lack of updates on the shortest path. In particular, more

evacuation time is witnessed compared to other three schemes in Subfig. 4.1(b). Both

V2RSU and V2RSU+V2V schemes show a competitive performance compared to the

Upperbound scheme. Here, due to the number of congestions, smaller network sizes

are not considered in Subfig. 4.1(b).

Figure 4.1. Evacuation time against network sizes.

2) Impact of Number of Vehicles: Second, we compare the evacuation time by

changing the number of vehicles in Figure 4.2. A set of vehicles is allocated to

multiple sources located in the middle of transportation network before initiating the

Texas Tech University, Cong Pu, August 2013

13

evacuation. Under the macroscopic flow model, the movement of vehicles is

represented as a flow. As the number of vehicles increases, the evacuation time

increases due to the limited capacity in the network. The performance gap between the

W/O Update scheme and both V2RSU and V2RSU+V2V schemes increases as the

number of congestion increases.

Figure 4.2. Evacuation time against the number of vehicles.

3) Impact of Number of Sources: Third, we compare the evacuation time by

changing the number of sources in Figure 4.3. The equal number of vehicles are

allocated to the designated number of sources. As the number of sources increases, the

evacuation time decreases because vehicles are spread into the network before

initiating the evacuation and the less number of vehicles is conflicted during the

evacuation period. Both V2RSU and V2RSU+V2V schemes shows lower evacuation

time.

Texas Tech University, Cong Pu, August 2013

14

Figure 4.3. Evacuation time against the number of sources.

Figure 4.4. Evacuation time against the number of destinations.

4) Impact of Number of Destinations: Fourth, we compare the evacuation time

by changing the number of destinations in Figure 4.4. The destination is one of

entrance points of the evacuation routes. Each vehicle setups its shortest path from the

current location to the destination, which is closely located. As the number of

destinations increases, each vehicle has more chance to choose the shortest path with

less evacuation time to the destination, and thus overall evacuation times decrease.

Texas Tech University, Cong Pu, August 2013

15

5) Impact of Number of Congestions: Finally, we compare the evacuation time

by changing the number of congestions in Figure 4.6. Since the Upperbound scheme

does not affect to the congestions, it shows a stable evacuation time. The W/O Update

scheme is congestion sensitive and shows a steep increase of the evacuation time.

However, both V2RSU and V2RSU+V2V schemes show low evacuation time because

they can avoid traffic congestions by updating the shortest path. The V2RSU scheme

shows higher evacuation time than that of the V2RSU+V2V scheme because it

opportunistically updates the shortest path whenever it meets the RSU during the

evacuation period. Unlike the V2RSU+V2V scheme, the V2RSU scheme cannot

update the shortest path in case of missing the RSU according to the shortest path.

Figure 4.5. Evacuation time against the number of congestions.

Texas Tech University, Cong Pu, August 2013

16

CHAPTER V

CONCLUSION AND FUTURE RESEARCH DIRECTION

In this paper, we investigated a least travel time based shortest path approach

in a transportation network and its enhancement by deploying VANET

communications to minimize the evacuation time. The VANET assisting schemes,

V2RSU and V2RSU+V2V, can reduce the evacuation time significantly and they

show a competitive performance compared to the Upperbound scheme. We plan to

extend the proposed techniques by considering a prediction mechanism for time-

varying traffic congestions. Since a RSU is not always available in every intersection,

vehicles may not update their shortest path frequently or in a timely manner. Thus,

when vehicles meet the RSU, they predict traffic congestions based on the updated

travel times and calculate the shortest path accordingly just in case of missing the

RSU.

Texas Tech University, Cong Pu, August 2013

17

REFERENCES

[1] The Canadian Press: IAEA says 170,000 people evacuated from area near

damaged Japan nuclear plant, Google, 3-13-2011.

[2] NYC shutting down transit, evacuating 375,000, The Wall Street Journal, 10-29-

2012.

[3] B. Wolshon, “One-way-out: Contraflow freeway operation for hurricane

evacuation,” Natural Hazards Review, vol. 2, no. 3, pp. 105–112, 2001.

[4] G. Ford, R. Henk, and P. barricklow, “Interstate highway 37 reverse flow analysis

- technical memorandum,” Texas Transportation Institute, Tech. Rep., 2000.

[5] Q. Lu, Y. Huang, and S. Shekhar, “Evacuation Planning: A Capacity Constrained

Routing Approach,” Lecture Note on Computer Science,vol. 2665, pp. 111–125, 2003.

[6] Q. Lu, B. George, and S. Shekhar, “Capacity Constrained Routing Algorithms for

Evacuation Planning: A Summary of Results,” Lecture Note on Computer Science,

vol. 3633, pp. 291–307, 2005.

[7] S. Kim, S. Shekhar, and B. George. “Evacuation Planning: Scalable Heuristics,” in

Proc. Int’l Symposium on Advances in Geographic Information Systems, 2007.

[8] S. Kim, S. Shekhar, and M. Min, “Contraflow Transportation Network

Reconfiguration for Evacuation Route Planning,” IEEE Trans. on Knowledge and

Data Engineering, vol. 20, no. 8, pp. 1115–1129, 2008.

[9] M. Min, “Synchronized Flow-Based Evacuation Route Planning,” in Proc. WASA,

2012, pp. 411–422.

[10] M. Min and J. Lee, “Maximum Throughput Flow-Based Contraflow Evacuation

Routing Algorithm,” in Proc. Workshop on Pervasive Networks for Emergency

Management (PerNEM) in conjunction with IEEE PerCom, 2013.

[11] M. C. Weigle and S. Olariu, “Intelligent Highway Infrastructure for Planned

Evacuation,” in Proc. IPCCC, 2007, pp. 594–599.

[12] D. Yin, “A Scalable Heuristic for Evacuation Planning in Large Road Network,”

in Int’l Workshop on Computational Transportation Science, 2009, pp. 19–24.

[13] M. Min and B. C. Neupane, “An Evacuation Planner Algorithm in Flat Time

Graphs,” in Proc. Ubiquitous Information Management and Communication, 2011.

Texas Tech University, Cong Pu, August 2013

18

[14] Florida’s One-Way Evacuation Operation, http://www.onewayflorida.org, Florida

Department of Transportation, 2012.

[15] X. Yang, J. Liu, F. Zhao, and N. Vaidya, “A Vehicle-to-Vehicle Communication

Protocol for Cooperative Collision Warning,” in Proc. On Mobile and Ubiquitous

Systems: Networking and Services (Mobiquitous 2004), 2004, pp. 114–123.

[16] Dedicated Short Range Communications (DSRC) Home,

http://www.leearmstrong.com/DSRC/DSRCHomeset.htm.

[17] IEEE Std. 802.11p Working Group, Wireless Access for the Vehicular

Environment (WAVE), http://grouper.ieee.org/groups/802/11/Reports/tgp update.htm.

[18] Y. Zhang, J. Zhao, and G. Cao, “On Scheduling Vehicle-Roadside Data Access,”

in ACM VANET, 2007, pp. 9–18.

[19] J. Zhao, Y. Zhang, and G. Cao, “Data Pouring and Buffering on The Road: A

new Data Dissemination Paradigm for Vehicular Ad Hoc Networks,” IEEE Trans. on

Vehicular Technology, vol. 56, no. 6, pp. 3266–3277, 2007.

Texas Tech University, Cong Pu, August 2013

19

APPENDIX

Code Implementation

This chapter discusses some of the important functions that are used in

implementing this experiment. We evaluate the performance of the proposed

algorithm using our customized simulator to conduct our experiments by using C.

In the functionFile.h file, the functions describe the vehicles behavior based on

the different conditions. We first evaluate an ideal case where there is no traffic

congestion. This case will achieve the minimum evacuation time based on the shortest

path and it is used as the performance upper bound. Second, we consider a case where

each vehicle follows its initial shortest path without update during the evacuation

period in the presence of traffic congestions. Third, updating the initial shortest path

whenever possible via only V2I communication in a VANET is considered. Finally,

combination of V2I and V2V communications are considered to update the shortest

path directly or indirectly through multi-hop relays.

#define DEFAULT_VERTEX_NUM 400

#define INIFINITE 10000

#define RANGE 2

#define NUMBER_OF_SOURCE 4

#define NUMBER_OF_VEHICLE 1000

#define GROUP_OF_VEHILE 250

#define NUMBER_OF_DESTINATION 8

#define NUMBER_OF_CONGESTION 4

#define NUMBER_OF_ACCESSPOINT 4

typedef struct{

Texas Tech University, Cong Pu, August 2013

20

int travelTime;

}GraphEdge, *PGraphEdge;

typedef struct{

int vertexID;

int numberOfVehicle;

}GraphVertex, *PGraphVertex;

typedef struct{

int vertexNum;

GraphVertex vertex[DEFAULT_VERTEX_NUM];

GraphEdge

arcsMatrix[DEFAULT_VERTEX_NUM][DEFAULT_VERTEX_NUM];

}GraphMatrix, *PGraphMatrix;

typedef struct{

int topSource[NUMBER_OF_SOURCE];

int topDestination[NUMBER_OF_DESTINATION];

int bottomSource[NUMBER_OF_SOURCE];

int bottomDestination[NUMBER_OF_DESTINATION];

int topID;

int bottomID;

}SourceDestination, *PSourceDestination;

typedef struct{

int time;

Texas Tech University, Cong Pu, August 2013

21

 int APcommunication;

 int Vcommunication;

 int Totalcommunication;

}TimeCommunication, *PTimeCommunication;

typedef struct{

 int pathTime;

 int *pathPointer;

 int pathSize;

}PathInfo, PPathInfo;

int randomTime(){

 int result;

 result = rand()%40 + 30;

 return result;

}

float randomCapacity(){

 time_t t;

 srand((unsigned)time(&t));

 float result;

 result = rand()%5 + 1;

 return result;

}

float randomCapacity_Ideal(int timeSeed){

 srand(timeSeed);

 float result;

Texas Tech University, Cong Pu, August 2013

22

result = rand()%2 + 3;

return result;

}

float randomCapacity_CongestionAvoidance(int timeSeed){

srand(timeSeed);

float result;

result = rand()%2 + 1;

return result;

}

int congestionTime(int timeSed){

int i;

int tempTime = 0;

int finalCongestionTime = 0;

for(i = 0; i < NUMBER_OF_CONGESTION; i++){

srand(timeSed + i);

if((timeSed + i + tempTime)%2==0){

tempTime = rand()%40 + 30;

}

else{

tempTime = rand()%30 + 70;

}

finalCongestionTime = finalCongestionTime + tempTime;

Texas Tech University, Cong Pu, August 2013

23

 }

 return finalCongestionTime;

}

int congestionTimeVehicle(int timeSed){

 int i;

 int tempTime = 0;

 int finalCongestionTime = 0;

 for(i = 0; i < (NUMBER_OF_CONGESTION / 2); i++){

 srand(timeSed + i);

 if((timeSed + i + tempTime)%2==0){

 tempTime = rand()%40 + 30;

 }

 finalCongestionTime = finalCongestionTime + tempTime;

 }

 return finalCongestionTime;

}

int congestionTimeVehicleAP(int timeSed){

 int i;

 int tempTime = 0;

 int finalCongestionTime = 0;

 tempTime = rand()%20;

Texas Tech University, Cong Pu, August 2013

24

 finalCongestionTime = finalCongestionTime + tempTime;

 return finalCongestionTime;

}

int newTraveltime(int timeSeed){

 int result;

 srand(timeSeed);

 result = rand()%30 + 70;

 return result;

}

float randomProbability(int timeSeed){

 float result;

 srand(timeSeed);

 result = (rand()%8 + 1)/10.0;

 return result;

}

void createArcsMatrix(PGraphMatrix pGraph){

 int i;

 int j;

 int tempTravelTime;

 time_t t;

 srand((unsigned)time(&t));

Texas Tech University, Cong Pu, August 2013

25

 FILE *fp = fopen("travelTime.txt","w");

 if(!fp){

 printf("create and open file failed\n");

 }

 pGraph->vertexNum = DEFAULT_VERTEX_NUM;

 for(i = 0; i < pGraph->vertexNum; i++){

 pGraph->vertex[i].vertexID = i;

 pGraph->vertex[i].numberOfVehicle = 0;

 }

 for(i = 0; i < pGraph->vertexNum; i++){

 for(j = 0; j < pGraph->vertexNum; j++){

 pGraph->arcsMatrix[i][j].travelTime = INIFINITE;

 }

 }

 for(i = 0; i < (DEFAULT_VERTEX_NUM - (int)

sqrt(DEFAULT_VERTEX_NUM)); i++){

 if(((i % (int) sqrt(DEFAULT_VERTEX_NUM)) == (int)

sqrt(DEFAULT_VERTEX_NUM) - 1)){

 tempTravelTime = randomTime();

 pGraph->arcsMatrix[i][i + (int)

sqrt(DEFAULT_VERTEX_NUM)].travelTime = tempTravelTime;

 pGraph->arcsMatrix[i + (int)

sqrt(DEFAULT_VERTEX_NUM)][i].travelTime = tempTravelTime;

 }

 else{

Texas Tech University, Cong Pu, August 2013

26

tempTravelTime = randomTime();

pGraph->arcsMatrix[i][i + 1].travelTime = tempTravelTime;

pGraph->arcsMatrix[i + 1][i].travelTime = tempTravelTime;

tempTravelTime = randomTime();

pGraph->arcsMatrix[i][i + (int)

sqrt(DEFAULT_VERTEX_NUM)].travelTime = tempTravelTime;

pGraph->arcsMatrix[i + (int)

sqrt(DEFAULT_VERTEX_NUM)][i].travelTime = tempTravelTime;

}

}

for(i = DEFAULT_VERTEX_NUM - sqrt(DEFAULT_VERTEX_NUM); i <

DEFAULT_VERTEX_NUM - 1; i++){

tempTravelTime = randomTime();

pGraph->arcsMatrix[i][i + 1].travelTime = tempTravelTime;

pGraph->arcsMatrix[i + 1][i].travelTime = tempTravelTime;

}

for(i = 0; i < pGraph->vertexNum; i++){

for(j = 0; j < pGraph->vertexNum; j++){

if(j < pGraph->vertexNum - 1){

fprintf(fp,"%d,",pGraph->arcsMatrix[i][j].travelTime);

}

else{

fprintf(fp,"%d\n",pGraph->arcsMatrix[i][j].travelTime);

Texas Tech University, Cong Pu, August 2013

27

 }

 }

 }

 fclose(fp);

}

SourceDestination generateSourceDestinationPoint(GraphMatrix pGraph){

 GraphMatrix temppGraph = pGraph;

 SourceDestination tempSourceDestination;

 int i;

 int j;

 int k;

 int temp;

 int tempID;

 int topTempID[NUMBER_OF_SOURCE];

 int bottomtTempID[NUMBER_OF_SOURCE];

 int temRandom = 0;

 int repeat = 0;

 int sideLength;

 time_t t;

 srand((unsigned)time(&t));

 int frontTopID_Source;

 int backTopID_Source;

 int frontTopID_Destination;

Texas Tech University, Cong Pu, August 2013

28

int backTopID_Destination;

int frontBottomID_Source;

int backBottomID_Source;

int frontBottomID_Destination;

int backBottomID_Destination;

sideLength = (int)sqrt(DEFAULT_VERTEX_NUM);

frontTopID_Source = (sideLength/2 - 1)*sideLength;

backTopID_Source = frontTopID_Source + (sideLength - 1);

tempSourceDestination.topID = backTopID_Source;

frontTopID_Destination = 0;

backTopID_Destination = frontTopID_Destination + (sideLength - 1);

frontBottomID_Source = (sideLength/2)*sideLength;

backBottomID_Source = frontBottomID_Source + (sideLength - 1);

tempSourceDestination.bottomID = frontBottomID_Source;

frontBottomID_Destination = (sideLength - 1)*sideLength;

backBottomID_Destination = frontBottomID_Destination + (sideLength - 1);

//TOP:generate the source point

for(i = 0; i < NUMBER_OF_SOURCE; i++){

repeat = 0;

temRandom = rand()%((backTopID_Source-RANGE)-

(frontTopID_Source+RANGE)+1)+(frontTopID_Source+RANGE);

Texas Tech University, Cong Pu, August 2013

29

 for(j = 0; j < i; j++){

 if(temRandom ==

tempSourceDestination.topSource[j]){

 repeat = 1;

 break;

 }

 }

 if(repeat == 0){

 tempSourceDestination.topSource[i] = temRandom;

 }

 else{

 i = i - 1;

 }

 }

 //TOP:generate the destination point

 for(i = 0; i < NUMBER_OF_DESTINATION; i++){

 repeat = 0;

 temRandom = rand()%((backTopID_Destination-RANGE)-

(frontTopID_Destination+RANGE)+1)+(frontTopID_Destination+RANGE);

 for(j = 0; j < i; j++){

 if(temRandom ==

tempSourceDestination.topDestination[j]){

 repeat = 1;

 break;

Texas Tech University, Cong Pu, August 2013

30

}

}

if(repeat == 0){

tempSourceDestination.topDestination[i] = temRandom;

}

else{

i = i - 1;

}

}

//BOTTOM:generate the source point and assign the number of vehicle to it

for(i = 0; i < NUMBER_OF_SOURCE; i++){

repeat = 0;

temRandom = rand()%((backBottomID_Source-RANGE)-

(frontBottomID_Source+RANGE)+1)+(frontBottomID_Source+RANGE);

for(j = 0; j < i; j++){

if(temRandom ==

tempSourceDestination.bottomSource[j]){

repeat = 1;

break;

}

}

if(repeat == 0){

 tempSourceDestination.bottomSource[i] = temRandom;

}

Texas Tech University, Cong Pu, August 2013

31

 else{

 i = i - 1;

 }

 }

 //BOTTOM:generate the destination point

 for(i = 0; i < NUMBER_OF_DESTINATION; i++){

 repeat = 0;

 temRandom = rand()%((backBottomID_Destination-RANGE)-

(frontBottomID_Destination+RANGE)+1)+(frontBottomID_Destination+RANGE);

 for(j = 0; j < i; j++){

 if(temRandom ==

tempSourceDestination.bottomDestination[j]){

 repeat = 1;

 break;

 }

 }

 if(repeat == 0){

 tempSourceDestination.bottomDestination[i] =

temRandom;

 }

 else{

 i = i -1;

 }

 }

Texas Tech University, Cong Pu, August 2013

32

 return tempSourceDestination;

}

TimeCommunication topDijkstraAlgorithm_Ideal(GraphMatrix pGraph, int source, int

destination, int backTopID_Source){

 GraphMatrix tempToppGraph = pGraph;

 TimeCommunication tempTimeCommunication;

 int i;

 int j;

 int buffer;

 int topID = backTopID_Source + 1;

 int flag[topID];

 int shortestPath[topID];

 int tempMinWeight;

 int tempMinID;

 int temp;

 int topTempTravelTimeMatrix[topID][topID];

 Queue *record[topID];

 for(i = 0; i < topID; i++){

 for(j = 0; j < topID; j++){

 topTempTravelTimeMatrix[i][j] =

tempToppGraph.arcsMatrix[i][j].travelTime;

 }

Texas Tech University, Cong Pu, August 2013

33

}

for(i = 0; i < topID; i++){

flag[i] = 0;

shortestPath[i] = topTempTravelTimeMatrix[source][i];

record[i] = InitQueue();

EnQueue(record[i], source);

}

flag[source] = -1;

shortestPath[source] = 0;

for(i = 1; i < topID; i++){

tempMinWeight = INIFINITE;

for(j = 0; j < topID; j++){

if(flag[j] != -1 && shortestPath[j] < tempMinWeight){

tempMinWeight = shortestPath[j];

tempMinID = j;

}

}

flag[tempMinID] = -1;

EnQueue(record[tempMinID],tempMinID);

for(j = 0; j < topID; j++){

temp = tempMinWeight +

topTempTravelTimeMatrix[tempMinID][j];

if(j != source && temp < shortestPath[j]){

Texas Tech University, Cong Pu, August 2013

34

 shortestPath[j] = temp;

 ClearQueue(record[j]);

 EnQueue(record[j], source);

 buffer = DeQueue(record[tempMinID]);

 EnQueue(record[tempMinID], buffer);

 while(GetFront(record[tempMinID]) != source){

 buffer = DeQueue(record[tempMinID]);

 EnQueue(record[j], buffer);

 EnQueue(record[tempMinID], buffer);

 }

 }

 }

 }

 for(i=0;i<topID;i++){

 DestroyQueue(record[i]);

 }

 tempTimeCommunication.time = shortestPath[destination];

 tempTimeCommunication.APcommunication =

tempToppGraph.vertex[source].numberOfVehicle*NUMBER_OF_ACCESSPOINT;

 return tempTimeCommunication;

}

TimeCommunication bottomDijkstraAlgorithm_Ideal(GraphMatrix pGraph, int

source, int destination, int downTempID){

Texas Tech University, Cong Pu, August 2013

35

GraphMatrix tempBottompGraph = pGraph;

TimeCommunication tempTimeCommunication;

int i;

int j;

int buffer;

int flag[DEFAULT_VERTEX_NUM-downTempID];

int shortestPath[DEFAULT_VERTEX_NUM-downTempID];

int tempMinWeight;

int tempMinID;

int temp;

int bottomTempTravelTimeMatrix[DEFAULT_VERTEX_NUM-

downTempID][DEFAULT_VERTEX_NUM-downTempID];

Queue *record[DEFAULT_VERTEX_NUM-downTempID];

for(i = downTempID; i < DEFAULT_VERTEX_NUM; i++){

for(j = downTempID; j < DEFAULT_VERTEX_NUM; j++){

bottomTempTravelTimeMatrix[i - downTempID][j -

downTempID] = tempBottompGraph.arcsMatrix[i][j].travelTime;

}

}

for(i = 0; i < DEFAULT_VERTEX_NUM-downTempID; i++){

flag[i] = 0;

shortestPath[i] = bottomTempTravelTimeMatrix[source-

downTempID][i];

record[i] = InitQueue();

Texas Tech University, Cong Pu, August 2013

36

 EnQueue(record[i], source);

 }

 flag[source-downTempID] = -1;

 shortestPath[source-downTempID] = 0;

 for(i = 1; i < DEFAULT_VERTEX_NUM-downTempID; i++){

 tempMinWeight = INIFINITE;

 for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){

 if(flag[j] != -1 && shortestPath[j] < tempMinWeight){

 tempMinWeight = shortestPath[j];

 tempMinID = j;

 }

 }

 flag[tempMinID] = -1;

 EnQueue(record[tempMinID],tempMinID+downTempID);

 for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){

 temp = tempMinWeight +

bottomTempTravelTimeMatrix[tempMinID][j];

 if(j != source && temp < shortestPath[j]){

 shortestPath[j] = temp;

 ClearQueue(record[j]);

 EnQueue(record[j], source);

 buffer = DeQueue(record[tempMinID]);

 EnQueue(record[tempMinID], buffer);

 while(GetFront(record[tempMinID]) != source){

Texas Tech University, Cong Pu, August 2013

37

 buffer = DeQueue(record[tempMinID]);

 EnQueue(record[j], buffer);

 EnQueue(record[tempMinID], buffer);

 }

 }

 }

 }

 for(i = 0; i < DEFAULT_VERTEX_NUM-downTempID; i++){

 DestroyQueue(record[i]);

 }

 tempTimeCommunication.time = shortestPath[destination-downTempID];

 tempTimeCommunication.APcommunication =

tempBottompGraph.vertex[source].numberOfVehicle*NUMBER_OF_ACCESSPOIN

T;

 return tempTimeCommunication;

}

PathInfo topDijkstraAlgorithm_PathSearch(GraphMatrix pGraph, int source, int

destination, int backTopID_Source){

 GraphMatrix tempToppGraph = pGraph;

 PathInfo tempPathInfo;

 int i;

 int j;

 int buffer;

Texas Tech University, Cong Pu, August 2013

38

int topID = backTopID_Source + 1;

int flag[topID];

int shortestPath[topID];

int tempMinWeight;

int tempMinID;

int temp;

int *trace = NULL;

int topTempTravelTimeMatrix[topID][topID];

Queue *record[topID];

for(i = 0; i < topID; i++){

for(j = 0; j < topID; j++){

topTempTravelTimeMatrix[i][j] =

tempToppGraph.arcsMatrix[i][j].travelTime;

}

}

for(i = 0; i < topID; i++){

flag[i] = 0;

shortestPath[i] = topTempTravelTimeMatrix[source][i];

record[i] = InitQueue();

EnQueue(record[i], source);

}

flag[source] = -1;

shortestPath[source] = 0;

for(i = 1; i < topID; i++){

Texas Tech University, Cong Pu, August 2013

39

 tempMinWeight = INIFINITE;

 for(j = 0; j < topID; j++){

 if(flag[j] != -1 && shortestPath[j] < tempMinWeight){

 tempMinWeight = shortestPath[j];

 tempMinID = j;

 }

 }

 flag[tempMinID] = -1;

 EnQueue(record[tempMinID],tempMinID);

 for(j = 0; j < topID; j++){

 temp = tempMinWeight +

topTempTravelTimeMatrix[tempMinID][j];

 if(j != source && temp < shortestPath[j]){

 shortestPath[j] = temp;

 ClearQueue(record[j]);

 EnQueue(record[j], source);

 buffer = DeQueue(record[tempMinID]);

 EnQueue(record[tempMinID], buffer);

 while(GetFront(record[tempMinID]) != source){

 buffer = DeQueue(record[tempMinID]);

 EnQueue(record[j], buffer);

 EnQueue(record[tempMinID], buffer);

 }

 }

Texas Tech University, Cong Pu, August 2013

40

}

}

tempPathInfo.pathSize = GetSize(record[destination]);

tempPathInfo.pathTime = shortestPath[destination];

tempPathInfo.pathPointer = (int *)malloc(tempPathInfo.pathSize*sizeof(int));

for(i = 0; i < tempPathInfo.pathSize; i++){

tempPathInfo.pathPointer[i] = DeQueue(record[destination]);

}

for(i=0;i<topID;i++){

if(i != destination){

DestroyQueue(record[i]);

}

}

return tempPathInfo;

}

PathInfo bottomDijkstraAlgorithm_PathSearch(GraphMatrix pGraph, int source, int

destination, int downTempID){

GraphMatrix tempBottompGraph = pGraph;

PathInfo tempPathInfo;

int i;

int j;

Texas Tech University, Cong Pu, August 2013

41

int buffer;

int flag[DEFAULT_VERTEX_NUM-downTempID];

int shortestPath[DEFAULT_VERTEX_NUM-downTempID];

int tempMinWeight;

int tempMinID;

int temp;

int *trace = NULL;

int bottomTempTravelTimeMatrix[DEFAULT_VERTEX_NUM-

downTempID][DEFAULT_VERTEX_NUM-downTempID];

Queue *record[DEFAULT_VERTEX_NUM-downTempID];

for(i = downTempID; i < DEFAULT_VERTEX_NUM; i++){

for(j = downTempID; j < DEFAULT_VERTEX_NUM; j++){

bottomTempTravelTimeMatrix[i - downTempID][j -

downTempID] = tempBottompGraph.arcsMatrix[i][j].travelTime;

}

}

for(i = 0; i < DEFAULT_VERTEX_NUM-downTempID; i++){

flag[i] = 0;

shortestPath[i] = bottomTempTravelTimeMatrix[source-

downTempID][i];

record[i] = InitQueue();

EnQueue(record[i], source);

}

flag[source-downTempID] = -1;

Texas Tech University, Cong Pu, August 2013

42

 shortestPath[source-downTempID] = 0;

 for(i = 1; i < DEFAULT_VERTEX_NUM-downTempID; i++){

 tempMinWeight = INIFINITE;

 for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){

 if(flag[j] != -1 && shortestPath[j] < tempMinWeight){

 tempMinWeight = shortestPath[j];

 tempMinID = j;

 }

 }

 flag[tempMinID] = -1;

 EnQueue(record[tempMinID],tempMinID+downTempID);

 for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){

 temp = tempMinWeight +

bottomTempTravelTimeMatrix[tempMinID][j];

 if(j != source && temp < shortestPath[j]){

 shortestPath[j] = temp;

 ClearQueue(record[j]);

 EnQueue(record[j], source);

 buffer = DeQueue(record[tempMinID]);

 EnQueue(record[tempMinID], buffer);

 while(GetFront(record[tempMinID]) != source){

 buffer = DeQueue(record[tempMinID]);

 EnQueue(record[j], buffer);

Texas Tech University, Cong Pu, August 2013

43

 EnQueue(record[tempMinID], buffer);

}

}

}

}

tempPathInfo.pathSize = GetSize(record[destination-downTempID]);

tempPathInfo.pathTime = shortestPath[destination-downTempID];

tempPathInfo.pathPointer = (int *)malloc(tempPathInfo.pathSize*sizeof(int));

for(i = 0; i < tempPathInfo.pathSize; i++){

tempPathInfo.pathPointer[i] = DeQueue(record[destination-

downTempID]);

}

for(i = 0; i < DEFAULT_VERTEX_NUM-downTempID; i++){

if(i != (destination-downTempID)){

DestroyQueue(record[i]);

}

}

return tempPathInfo;

}

TimeCommunication topDijkstraAlgorithm_CongestionAvoidance(GraphMatrix

pGraph, int source, int destination, int backTopID_Source, PathInfo pathInformation,

int *accessPointP){

GraphMatrix tempToppGraph = pGraph;

Texas Tech University, Cong Pu, August 2013

44

TimeCommunication tempTimeCommunication;

PathInfo tempPathInformation = pathInformation;

int *tempAccessPointP = accessPointP;

int i;

int j;

int k;

int buffer;

int count = 0;

int topID = backTopID_Source + 1;

int flag[topID];

int shortestPath[topID];

int tempMinWeight;

int tempMinID;

int temp;

int newSource;

int numOfAP;

int queueSize;

int *trace = NULL;

int topTempTravelTimeMatrix[topID][topID];

Queue *record[topID];

newSource = tempPathInformation.pathPointer[1];

numOfAP = NUMBER_OF_SOURCE * NUMBER_OF_ACCESSPOINT * 2;

for(i = 0; i < topID; i++){

for(j = 0; j < topID; j++){

Texas Tech University, Cong Pu, August 2013

45

 topTempTravelTimeMatrix[i][j] =

tempToppGraph.arcsMatrix[i][j].travelTime;

 }

 }

 for(i = 0; i < topID; i++){

 flag[i] = 0;

 shortestPath[i] = topTempTravelTimeMatrix[newSource][i];

 record[i] = InitQueue();

 EnQueue(record[i], newSource);

 }

 flag[newSource] = -1;

 shortestPath[newSource] = 0;

 for(i = 1; i < topID; i++){

 tempMinWeight = INIFINITE;

 for(j = 0; j < topID; j++){

 if(flag[j] != -1 && shortestPath[j] < tempMinWeight){

 tempMinWeight = shortestPath[j];

 tempMinID = j;

 }

 }

 flag[tempMinID] = -1;

 EnQueue(record[tempMinID],tempMinID);

 for(j = 0; j < topID; j++){

Texas Tech University, Cong Pu, August 2013

46

 temp = tempMinWeight +

topTempTravelTimeMatrix[tempMinID][j];

 if(j != newSource && temp < shortestPath[j]){

 shortestPath[j] = temp;

 ClearQueue(record[j]);

 EnQueue(record[j], newSource);

 buffer = DeQueue(record[tempMinID]);

 EnQueue(record[tempMinID], buffer);

 while(GetFront(record[tempMinID]) != newSource){

 buffer = DeQueue(record[tempMinID]);

 EnQueue(record[j], buffer);

 EnQueue(record[tempMinID], buffer);

 }

 }

 }

 }

 queueSize = GetSize(record[destination]);

 trace = (int *)malloc(queueSize*sizeof(int));

 for(i = 0; i < queueSize; i++){

 trace[i] = DeQueue(record[destination]);

 }

 for(i = 0; i < numOfAP; i++){

 for(j = 0; j < queueSize; j++){

Texas Tech University, Cong Pu, August 2013

47

if(tempAccessPointP[i] == trace[j]){

count++;

}

}

}

tempTimeCommunication.time = shortestPath[destination] +

topTempTravelTimeMatrix[tempPathInformation.pathPointer[0]][tempPathInformatio

n.pathPointer[1]];

tempTimeCommunication.APcommunication = 0;

tempTimeCommunication.Vcommunication = 0;

for(i = 0; i < count; i++){

tempTimeCommunication.APcommunication =

randomProbability(tempTimeCommunication.time +

i)*tempToppGraph.vertex[source].numberOfVehicle +

tempTimeCommunication.APcommunication;

tempTimeCommunication.Vcommunication = (1 -

randomProbability(tempTimeCommunication.time +

i))*tempToppGraph.vertex[source].numberOfVehicle +

tempTimeCommunication.Vcommunication;

}

tempTimeCommunication.Totalcommunication =

tempToppGraph.vertex[source].numberOfVehicle * count;

free(trace);

return tempTimeCommunication;

}

Texas Tech University, Cong Pu, August 2013

48

TimeCommunication bottomDijkstraAlgorithm_CongestionAvoidance(GraphMatrix

pGraph, int source, int destination, int downTempID, PathInfo pathInformation, int

*accessPointP){

 GraphMatrix tempBottompGraph = pGraph;

 TimeCommunication tempTimeCommunication;

 PathInfo tempPathInformation = pathInformation;

 int *tempAccessPointP = accessPointP;

 int i;

 int j;

 int k;

 int buffer;

 int count = 0;

 int flag[DEFAULT_VERTEX_NUM-downTempID];

 int shortestPath[DEFAULT_VERTEX_NUM-downTempID];

 int tempMinWeight;

 int tempMinID;

 int temp;

 int newSource;

 int numOfAP;

 int queueSize;

 int *trace = NULL;

 int bottomTempTravelTimeMatrix[DEFAULT_VERTEX_NUM-

downTempID][DEFAULT_VERTEX_NUM-downTempID];

Texas Tech University, Cong Pu, August 2013

49

 Queue *record[DEFAULT_VERTEX_NUM-downTempID];

 newSource = tempPathInformation.pathPointer[1];

 numOfAP = NUMBER_OF_SOURCE * NUMBER_OF_ACCESSPOINT * 2;

 for(i = downTempID; i < DEFAULT_VERTEX_NUM; i++){

 for(j = downTempID; j < DEFAULT_VERTEX_NUM; j++){

 bottomTempTravelTimeMatrix[i - downTempID][j -

downTempID] = tempBottompGraph.arcsMatrix[i][j].travelTime;

 }

 }

 for(i = 0; i < DEFAULT_VERTEX_NUM-downTempID; i++){

 flag[i] = 0;

 shortestPath[i] = bottomTempTravelTimeMatrix[newSource-

downTempID][i];

 record[i] = InitQueue();

 EnQueue(record[i], newSource);

 }

 flag[newSource-downTempID] = -1;

 shortestPath[newSource-downTempID] = 0;

 for(i = 1; i < DEFAULT_VERTEX_NUM-downTempID; i++){

 tempMinWeight = INIFINITE;

 for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){

 if(flag[j] != -1 && shortestPath[j] < tempMinWeight){

 tempMinWeight = shortestPath[j];

 tempMinID = j;

Texas Tech University, Cong Pu, August 2013

50

}

}

flag[tempMinID] = -1;

EnQueue(record[tempMinID],tempMinID+downTempID);

for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){

temp = tempMinWeight +

bottomTempTravelTimeMatrix[tempMinID][j];

if(j != newSource && temp < shortestPath[j]){

shortestPath[j] = temp;

ClearQueue(record[j]);

EnQueue(record[j], newSource);

buffer = DeQueue(record[tempMinID]);

EnQueue(record[tempMinID], buffer);

while(GetFront(record[tempMinID]) != newSource){

buffer = DeQueue(record[tempMinID]);

EnQueue(record[j], buffer);

EnQueue(record[tempMinID], buffer);

}

}

}

}

queueSize = GetSize(record[destination-downTempID]);

trace = (int *)malloc(queueSize*sizeof(int));

for(i = 0; i < queueSize; i++){

Texas Tech University, Cong Pu, August 2013

51

 trace[i] = DeQueue(record[destination-downTempID]);

 }

 for(i = 0; i < numOfAP; i++){

 for(j = 0; j < queueSize; j++){

 if(tempAccessPointP[i] == trace[j]){

 count++;

 }

 }

 }

 tempTimeCommunication.time = shortestPath[destination-downTempID] +

bottomTempTravelTimeMatrix[tempPathInformation.pathPointer[0] -

downTempID][tempPathInformation.pathPointer[1] - downTempID];

 tempTimeCommunication.APcommunication = 0;

 tempTimeCommunication.Vcommunication = 0;

 for(i = 0; i < count; i++){

 tempTimeCommunication.APcommunication =

randomProbability(tempTimeCommunication.time +

i)*tempBottompGraph.vertex[source].numberOfVehicle +

tempTimeCommunication.APcommunication;

 tempTimeCommunication.Vcommunication = (1 -

randomProbability(tempTimeCommunication.time +

i))*tempBottompGraph.vertex[source].numberOfVehicle +

tempTimeCommunication.Vcommunication;

 }

Texas Tech University, Cong Pu, August 2013

52

tempTimeCommunication.Totalcommunication =

tempBottompGraph.vertex[source].numberOfVehicle * count;

free(trace);

return tempTimeCommunication;

}

	Front
	Main

