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ABSTRACT 

Recent natural and man-made disasters such as Hurricane Sandy (2012) and 

the Fukushima nuclear power plant (2011) make efficient evacuation route planning 

and routing more important than ever. A conventional sign-based evacuation route and 

its information are limited to use in a life-threatening environment. In this paper, we 

first investigate a least travel time based shortest path approach to minimize the 

evacuation time in a Vehicular Ad hoc Network (VANET). Since the travel time 

changes in the presence of time-varying traffic congestions, frequent and timely 

updates of the shorted path during the evacuation period are essential. Thus, we also 

investigate the evacuation assisting VANET to efficiently update the shortest path on 

wheel by deploying vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) 

communications. Then we propose VANET assisting schemes, V2RSU and 

V2RSU+V2V. We also implement the shortest path based schemes to work in 

VANETs, Upperbound and W/O Update. We compare the performance of four 

schemes as a function of network size and number of vehicles, sources, destinations, 

and congestions. The simulation results indicate that the proposed schemes integrated 

with a VANET can reduce the evacuation time significantly. 
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CHAPTER I 

INTRODUCTION 

With increasing risks from natural and man-made disasters, efficient 

evacuation plans play a critical role for life-saving in disaster and emergency 

preparedness. For example, a tsunami caused by a 9.0 earthquake damaged three 

nuclear reactors at the Fukushima Daiichi nuclear power plant in 2011. Over 170,000 

people evacuated and dispersed from the surrounding areas [1]. Global warming 

impacts the creation of super storms like Hurricane Katrina (2005), Rita (2005), and 

Sandy (2012). Recently Hurricane Sandy affected the East Coast and 24 US states, 

particularly damaging New York, which is the largest city in US, and required the 

mandatory evacuations of over 375,000 people residing in seashore and low-lying 

areas [2]. Although several US states (i.e., Louisiana, Mississippi, Florida, Texas, etc.) 

primarily use a signed evacuation route, which simply shows a direction and radio 

channels for information, its effectiveness is very limited in a life-threatening 

environment. 

For efficient evacuation route planning and routing, contraflow (or lane 

reversal) based approaches have been investigated to increase outbound evacuation 

route capacity and ultimately minimize the evacuation time. Researchers in academia 

and the US Department of Transportation (US-DOT) have been investigating how to 

operate and manage contraflow (i.e., changing or merging lanes and roads, controlling 

traffic lights, etc.) for maximizing the utilization of already-built infrastructures [3], 

[4]. On the other hand, [5], [6], [7], [8], [9], [10] propose diverse algorithms to find 

evacuation routes with the minimized computation in the presence of multiple sources 

(i.e., locations where evacuees evacuate from) and destinations (i.e., shelters where 

evacuees drive to). In addition, an intelligent highway infrastructure is proposed to 

support planned evacuations [11], where evacuation information can be disseminated 

based on a Vehicular Ad hoc Network (VANET) via limited vehicle-to-infrastructure 

(V2I) and/or vehicle-to-vehicle (V2V) communications. Note that since traffic 
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condition is often time-varying during an evacuation period, frequent and timely 

updates of evacuation information to evacuees are critical. 

In this paper, we investigate an evacuation assisting VANET to minimize the 

evacuation time by efficiently updating the shortest path to the evacuation routes. A 

VANET is an instance of a mobile ad hoc network (MANET) and consists of a set of 

mobile vehicles equipped with computing and communication capabilities. A VANET 

flexibly supports either V2I or V2V communications and it is well suited for 

facilitating flexible accessibility and information availability. Due to rapid advances in 

high speed wireless Internet, being on-line without interruption on wheel has been 

already realized. Our contribution is two-fold: 

• First, we model a transportation network as a graph form and investigate a least

travel time based shortest path approach to minimize the evacuation time in a VANET 

environment. The proposed approach is extended by integrating with V2I and V2V 

communications to further reduce the evacuation time. 

• Second, we develop a customized simulator and implement the proposed shortest

path update schemes to work in VANETS: Upperbound, W/O Update, V2RSU, and 

V2RSU+V2V. 

An extensive simulation study has been conducted for multidimensional 

analyses. We compare the performance of the schemes in terms of network size, and 

number of vehicles, sources, destinations, and congestions. The proposed schemes 

integrated with VANET, V2RSU and V2RSU+V2V, can reduce the evacuation time 

significantly and are a viable approach for expediting the evacuation. 

The rest of this paper is organized as follows. The prior study is reviewed and 

analyzed in Section II. A system model and its assumptions and the proposed 

communication protocols and techniques are presented in Section III. Section IV is 

devoted to performance evaluation and analysis. Finally, we conclude the paper with 

future directions in Section V. 
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CHAPTER II 

BACKGROUND AND RELATED WORK 

In this section, we review and analyze prior algorithms and communication 

protocols in evacuation route planning and VANETs, respectively. 

2.1. Evacuation Route Planning and Routing 

Due to the size of transportation network and its evacuation factors, heuristic 

approach is often used to produce a suboptimal and efficient evacuation plan. Unlike 

prior heuristic approach, calculating the shortest distance from a source to the closest 

destination, time-varying route capacity constraints are considered to compute the 

evacuation route in Capacity Constrained Routing Planner (CCRP) [5], [6], [7] and its 

extension (CCRP++) [12]. In the CCRP, evacuees are divided into a set of groups and 

each group is allocated to a route and time schedule based on its earliest arrival time to 

the destination. Since the route capacity changes represented as a time-expanded 

graph, a generalized Dijkstra’s shortest path search algorithm repeatedly calculates a 

quickest route available to each group from all sources in each iteration. The CCRP++ 

does not use the time-expanded graph but reduces the number of shortest path search 

operations by reusing the search results in previous iterations. [13] does not use the 

time-expanded graph either but quickest paths are searched that can reduce the 

evacuation time, instead of searching shortest path based on the travel time. In [9], a 

scalable evacuation routing algorithm is proposed based on synchronized flows 

instead of using the time-expanded graph. The synchronized flows are the path of 

evacuees from sources to destinations and the evacuees are distributed over the paths 

to have the same evacuation time. Virtual evacuees are also added to the synchronized 

flows to make the evacuation time equal. 

A good number of algorithms have been proposed for contraflow-aware 

evacuation route planning to minimize the evacuation time by increasing outbound 

evacuation route capacity. Researchers in academia and US-DOT have been focusing 

on the operating and managing lanes and roads and controlling traffic lights [3], [4] 
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but they cannot flexibly incorporate with diverse evacuation factors and thus, efficient 

contraflow road segments cannot be produced [14]. [8] defines the contraflow problem 

based on graph theory and proposes two heuristic algorithms by considering road 

capacity constraints, multiple sources, congestion factors, and scalability: Greedy and 

Bottleneck relief. The greedy algorithm needs the flow history of the original network 

to output a contraflow reconfigured network. The bottleneck relief algorithm only 

needs the original network and produce a contraflow reconfigured network by using a 

minimum cut. A contraflow evacuation routing algorithm is proposed based on reverse 

shortest path and maximum throughput flow [10]. A single running of reverse shortest 

path can provide a set of shortest paths from all sources to the destination and thus, the 

path-finding time reduces. Then the proposed maximum throughput flow scheme 

allocates as full as available route capacity into the shortest paths for minimum 

evacuation time. 

2.2. Vehicular Ad Hoc Networks Assisted Evacuation 

In VANET, drivers can monitor/share real-time traffic condition, send/receive 

Emergency Warning Messages (EWM), and avoid an accident, such as an intersection 

collision or a chain collision. Diverse applications and operations built for VANETS 

are available in both short and extended communication ranges. To realize and 

disseminate these techniques, government, industry, and academic community have 

been putting a lot of efforts on the combining wireless technologies with VANETs 

[16], [17]. 

Based on the aforementioned computing and communication capabilities, 

VANET has been integrated with evacuation process. An intelligent highway 

infrastructure is proposed to support a planned evacuation [11] by embedding 

piezoelectric pressure sensor belts in the road at regular intervals. Since traffic 

condition is often time-varying during evacuation period, frequent and timely updates 

of evacuation information to evacuees are critical. Vehicles communicate with the 

belts by uploading and download traffic-related information. Roadside units (RSUs) 

[18] or access points (APs) are combined with the belts. They can query vehicles for 
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the travel time and disseminate this aggregated information through the belts to the 

vehicles as they pass over the belts. This infrastructure can also alert drivers for 

incoming contraflows. 

In VANET, the RSUs can play a key role in evacuation process by 

disseminating information and assisting the communication between vehicles and the 

Internet. Here, a RSU can be mounted on the top of a signal light, a road lamp, a gas 

station, or an intersection, and it is connected with a wired network and operates as a 

router for vehicles to connect the Internet. Compared to the 3G/4G and satellite 

networks, the RSUs can provide location-dependent and real-time information with 

high bandwidth and low cost. [18] proposes several scheduling schemes for data 

access between vehicles and the RSUs. In [19], a data dissemination scheme is 

proposed by periodically broadcasting data to the vehicles in the road. This scheme is 

further improved by buffering and broadcasting data at/from the RSUs located at the 

intersection so that vehicles isolated from others and later arriving vehicles can still 

access available data. 

In summary, relatively little effort has been made in developing 

communication protocols and related techniques for assisting evacuation route 

planning and routing in a VANET, which becomes critical in disaster and emergency 

preparedness. 
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CHAPTER III 

THE PROPOSED EVACUATION-ASSISTING VEHICULAR AD 

HOC NETWORKS 

In this section, we first present the system model and then propose a 

communication protocol and algorithm for evacuation assisting VANETs. 

3.1. System Model 

In VANET, vehicles are powered by their own built-in battery and execute 

computing and communicating operations without concerning of energy conservation. 

Vehicles are equipped with communication facilities such as an IEEE 802.11-based 

Dedicated Short Range Communication (DSRC) transceiver. Thus, vehicles can 

communicate with other vehicles and the Internet flexibly through V2V or V2I 

communications. In the V2V communication, vehicles can communicates with other 

vehicles directly or indirectly through a multi-hop message relay without the 

assistance of any fixed infrastructure, such as a RSU [18]. In the V2I communication, 

however, vehicles are limited to a single-hop communication with a RSU. Bypassing 

vehicles can pour their data into a RSU that can temporary store and forward it to the 

following vehicles for improving data delivery. Vehicles also equip a built-in 

navigation system integrated with a Global Positioning System (GPS), in which a 

digital map is loaded to show the roads around the current location and direction, the 

shortest path to the destination, and location-dependent information. Vehicles are 

enable to monitor real-time traffic conditions, transceiver Emergency Warning 

Messages (EWMs), and avoid accidents such as an intersection collision or a chain 

collision. Due to high speed, vehicles may experience frequent disconnections or 

isolations from the RSUs or other vehicles. The movement of vehicles is restricted by 

underlying fixed roads with speed limits and traffic lights. 

In Figure 3.1, a subset of transportation network is represented as a graph form 

in terms of edge and vertex. In this paper, we consider a mesh network for the sake of 

simplicity. A RSU can be located in an intersection for sharing traffic and evacuation 
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information. Evacuation routes are located at the bottom with the limited number of 

entrance points. Upon evacuation, vehicles located in the multiple sources move to the 

multiple entrance points. In addition, a macroscopic network flow model is deployed 

to model the movement of vehicles, represented as a flow on the graph. This 

macroscopic model is preferred because it is effective to represent most capacity of a 

given transportation network such as road density, weighted mean speed, etc. [8]. 

Figure 3.1. A graph representation of a subset of the transportation network. 

3.2. Least Travel Time-based Shortest Path 

During the evacuation period, a set of evacuation routes and its related 

information will be disseminated to vehicles through the 3G network. The information 

at least contains state roads or interstate highways, their available entrance points, and 

a set of destinations. Note that not all the entrance points may be available to vehicles 

because lanes or roads can be changed or merged to expedite the evacuation. 

Evacuation routes are calculated by recent evacuation route planning algorithms [8], 

[9], [10], [12], [13] to achieve the minimized evacuation time in a given disaster area. 

Since the algorithms consider diverse factors including road size, capacity, and 

condition, contraflow, traffic condition, weather, etc., evacuation routes are often pre-

calculated in an off-line and ready for dissemination not to delay the evacuation. Thus, 

evacuation routes are seldom changed or updated in a real-time fashion. 
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We first investigate how quickly each vehicle can reach to one of target 

entrance points of the evacuation routes with the minimized evacuation time in a given 

transportation network. Here, the evacuation time is measured from when a first 

vehicle leaves a source to when a last vehicle arrives at one of entrance points of 

evacuation routes. Any evacuation time elapsed after reaching the entrance point of 

evacuation routes is not considered. In the transportation network, each road is 

characterized by its road capacity (croad) and travel time (ttrav). The road capacity is 

measured by the number of travel vehicles per a unit period. As shown in Fig. 1, when 

the number of vehicles (nvehicle) located at source (s) moves to destination (d), the 

evacuation time (tevac) is calculates by, 

Under the macroscopic methodology, the road capacity can be modeled by two 

methods: (i) continuous entering and (ii) occupy and empty [8]. In the continuous 

entering method, the number of vehicles equal to the road capacity travels the road as 

long as the road is available. In occupy and empty method, however, the number of 

vehicles equal to the road capacity occupies the road for the travel time. During the 

travel period, the road is not available to other vehicles. In this paper, we deploy the 

continuous entering method because it represents the movement of vehicles more 

realistic. 

When a vehicle receives evacuation information, it sets up a path from the 

current location to one of entrance points of the evacuation routes using a shortest path 

algorithm. Here, a shortest path is displayed in a pre-loaded area map on wheel 

navigation system. Because of diverse road capacities in the network, a shortest path 

based on the physical distance between source and destination is not considered. 

Instead, the least travel time will be considered by using the Dijkstra’s algorithm. The 

pseudo code of the proposed shortest path algorithm is shown in Figure 3.2. The 

algorithm is terminated as soon as the next vertex is a destination. 
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Figure 3.2. The pseudo code of the shortest path based on the least travel time. 

3.3. V2I and V2V Communications Assistance 

The aforementioned least travel time based shortest path is calculated once 

before vehicles move to a destination. Then the path is never updated during the 

evacuation period. One of implicit assumptions in this approach is that the travel time 

is fixed. However, the travel time can frequently be changed during the evacuation 

period because of traffic congestions. Thus, we also investigate how a VANET can 

assist in calculating least travel time based shortest path and achieve the minimized 

evacuation time in the presence of time-varying traffic congestions in a given 

transportation network. 

In VANET, vehicles can communicate with a RSU to update the shortest path. 

A set of RSUs is installed in the intersections and plays a role as a gateway to the 

Internet. We consider both V2I and V2V communications. In V2I communication, as 
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shown in Fig. 3, when a vehicle (i.e., np) is located in the communication range of a 

RSU, it sends a Request message piggybacked with recorded travel times to the RSU. 

Upon receiving the message, the RSU replies an Update message containing updated 

travel times in the transportation network. Then the vehicle can recalculate a shortest 

path from the current location to the destination based on the updated travel times. The 

vehicle will replace the pre-calculated shortest path with the updated path, if the travel 

time can be reduced. A possible drawback of this approach is that if a vehicle does not 

meet any RSU during the evacuation period, it cannot update the shortest path. To 

increase the chance of updating the shortest path, V2V communication is also 

considered in which vehicles located far away from a RSU can still update their 

shortest path through multi-hop relays. In Figure 3.3, when a vehicle (i.e., nq) is 

approaching to a RSU, it can receive an Update message from the RSU after two hop 

relays. Thus, the vehicle can update its shortest path and avoid traffic congestions 

early. 

Figure 3.3. Both V2I and V2V communications assist in updating the shortest path 
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CHAPTER IV 

PERFORMANCE EVALUATIONS 

4.1. The Simulation Testbed 

In this paper, we develop a customized simulator to conduct our experiments. 

We use a simple mesh network to model a transportation network. A set of mesh 

networks are deployed by changes network size, where a set of vehicles is allocated to 

multiple sources located in the middle of network. Two evacuation routes with 

multiple entrance points are located in the top and bottom of the network, respectively. 

Upon evacuation, vehicles move to one of entrance points of evacuation routes based 

on the least travel time in the presence of traffic congestion. We measure the 

evacuation time by changing the number of sources, destinations, vehicles, and 

congestions to measure the evacuation time. The simulation parameters are 

summarized in Table 4.1. 

Table 4.1. Simulation Parameters 

4.2. Simulation Results 

To compare the performance of proposed approaches, we first evaluate an 

ideal case where there is no traffic congestion. This case will achieve the minimum 

evacuation time based on the shortest path and it is used as the performance upper 

bound. It is denoted as Upperbound. Second, we consider a case where each vehicle 

follows its initial shortest path without update during the evacuation period in the 

presence of traffic congestion. It is denoted as W/O Update. Third, updating the initial 
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shortest path whenever possible via only V2I communication in a VANET is 

considered and it is denoted as V2RSU. Finally, combination of V2I and V2V 

communications are considered to update the shortest path directly or indirectly 

through multi-hop relays, and it is denoted as V2RSU+V2V. Here, unless otherwise 

specify, we use 8 sources, 4 destinations, 2,000 vehicles, and 4 or 8 congestions in the 

network. 

1) Impact of Network Size: In Figure 4.1, we first compare the evacuation time

by changing the network size and number of congestions. As the network size 

increases, the evacuation time increases almost linearly. With more number of traffic 

congestions, higher evacuation time is observed as shown in Figure 4.1(b) compared 

to Figure 4.1(a). The W/O Update scheme shows the highest evacuation time for entire 

network sizes because of lack of updates on the shortest path. In particular, more 

evacuation time is witnessed compared to other three schemes in Subfig. 4.1(b). Both 

V2RSU and V2RSU+V2V schemes show a competitive performance compared to the 

Upperbound scheme. Here, due to the number of congestions, smaller network sizes 

are not considered in Subfig. 4.1(b). 

Figure 4.1. Evacuation time against network sizes. 

2) Impact of Number of Vehicles: Second, we compare the evacuation time by

changing the number of vehicles in Figure 4.2. A set of vehicles is allocated to 

multiple sources located in the middle of transportation network before initiating the 



Texas Tech University, Cong Pu, August 2013 

13 

evacuation. Under the macroscopic flow model, the movement of vehicles is 

represented as a flow. As the number of vehicles increases, the evacuation time 

increases due to the limited capacity in the network. The performance gap between the 

W/O Update scheme and both V2RSU and V2RSU+V2V schemes increases as the 

number of congestion increases. 

Figure 4.2. Evacuation time against the number of vehicles. 

3) Impact of Number of Sources: Third, we compare the evacuation time by

changing the number of sources in Figure 4.3. The equal number of vehicles are 

allocated to the designated number of sources. As the number of sources increases, the 

evacuation time decreases because vehicles are spread into the network before 

initiating the evacuation and the less number of vehicles is conflicted during the 

evacuation period. Both V2RSU and V2RSU+V2V schemes shows lower evacuation 

time. 
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Figure 4.3. Evacuation time against the number of sources. 

Figure 4.4. Evacuation time against the number of destinations. 

4) Impact of Number of Destinations: Fourth, we compare the evacuation time

by changing the number of destinations in Figure 4.4. The destination is one of 

entrance points of the evacuation routes. Each vehicle setups its shortest path from the 

current location to the destination, which is closely located. As the number of 

destinations increases, each vehicle has more chance to choose the shortest path with 

less evacuation time to the destination, and thus overall evacuation times decrease. 
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5) Impact of Number of Congestions: Finally, we compare the evacuation time

by changing the number of congestions in Figure 4.6. Since the Upperbound scheme 

does not affect to the congestions, it shows a stable evacuation time. The W/O Update 

scheme is congestion sensitive and shows a steep increase of the evacuation time. 

However, both V2RSU and V2RSU+V2V schemes show low evacuation time because 

they can avoid traffic congestions by updating the shortest path. The V2RSU scheme 

shows higher evacuation time than that of the V2RSU+V2V scheme because it 

opportunistically updates the shortest path whenever it meets the RSU during the 

evacuation period. Unlike the V2RSU+V2V scheme, the V2RSU scheme cannot 

update the shortest path in case of missing the RSU according to the shortest path. 

Figure 4.5. Evacuation time against the number of congestions. 
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CHAPTER V 

CONCLUSION AND FUTURE RESEARCH DIRECTION 

In this paper, we investigated a least travel time based shortest path approach 

in a transportation network and its enhancement by deploying VANET 

communications to minimize the evacuation time. The VANET assisting schemes, 

V2RSU and V2RSU+V2V, can reduce the evacuation time significantly and they 

show a competitive performance compared to the Upperbound scheme. We plan to 

extend the proposed techniques by considering a prediction mechanism for time-

varying traffic congestions. Since a RSU is not always available in every intersection, 

vehicles may not update their shortest path frequently or in a timely manner. Thus, 

when vehicles meet the RSU, they predict traffic congestions based on the updated 

travel times and calculate the shortest path accordingly just in case of missing the 

RSU. 
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APPENDIX 

Code Implementation 

This chapter discusses some of the important functions that are used in 

implementing this experiment. We evaluate the performance of the proposed 

algorithm using our customized simulator to conduct our experiments by using C. 

In the functionFile.h file, the functions describe the vehicles behavior based on 

the different conditions. We first evaluate an ideal case where there is no traffic 

congestion. This case will achieve the minimum evacuation time based on the shortest 

path and it is used as the performance upper bound. Second, we consider a case where 

each vehicle follows its initial shortest path without update during the evacuation 

period in the presence of traffic congestions. Third, updating the initial shortest path 

whenever possible via only V2I communication in a VANET is considered. Finally, 

combination of V2I and V2V communications are considered to update the shortest 

path directly or indirectly through multi-hop relays. 

 

#define DEFAULT_VERTEX_NUM 400 

#define INIFINITE 10000 

#define RANGE 2 

#define NUMBER_OF_SOURCE 4 

#define NUMBER_OF_VEHICLE 1000 

#define GROUP_OF_VEHILE 250 

#define NUMBER_OF_DESTINATION 8 

#define NUMBER_OF_CONGESTION 4 

#define NUMBER_OF_ACCESSPOINT 4 

 

typedef struct{ 
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int travelTime; 

}GraphEdge, *PGraphEdge; 

typedef struct{ 

int vertexID; 

int numberOfVehicle; 

}GraphVertex, *PGraphVertex; 

typedef struct{ 

int vertexNum; 

GraphVertex vertex[DEFAULT_VERTEX_NUM]; 

GraphEdge 

arcsMatrix[DEFAULT_VERTEX_NUM][DEFAULT_VERTEX_NUM]; 

}GraphMatrix, *PGraphMatrix; 

typedef struct{ 

int topSource[NUMBER_OF_SOURCE]; 

int topDestination[NUMBER_OF_DESTINATION]; 

int bottomSource[NUMBER_OF_SOURCE]; 

int bottomDestination[NUMBER_OF_DESTINATION]; 

int topID; 

int bottomID; 

}SourceDestination, *PSourceDestination; 

typedef struct{ 

int time; 



Texas Tech University, Cong Pu, August 2013 

21 

 int APcommunication; 

 int Vcommunication; 

 int Totalcommunication; 

}TimeCommunication, *PTimeCommunication; 

typedef struct{ 

 int pathTime; 

 int *pathPointer; 

 int pathSize; 

}PathInfo, PPathInfo; 

int randomTime(){ 

 int result; 

 result = rand()%40 + 30; 

 return result;  

} 

float randomCapacity(){ 

 time_t t; 

 srand((unsigned)time(&t)); 

 float result; 

 result = rand()%5 + 1; 

 return result;  

} 

float randomCapacity_Ideal(int timeSeed){ 

 srand(timeSeed); 

 float result; 
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result = rand()%2 + 3; 

return result; 

} 

float randomCapacity_CongestionAvoidance(int timeSeed){ 

srand(timeSeed); 

float result; 

result = rand()%2 + 1; 

return result; 

} 

int congestionTime(int timeSed){ 

int i; 

int tempTime = 0; 

int finalCongestionTime = 0; 

for(i = 0; i < NUMBER_OF_CONGESTION; i++){  

srand(timeSed + i); 

if((timeSed + i + tempTime)%2==0){ 

tempTime = rand()%40 + 30; 

} 

else{ 

tempTime = rand()%30 + 70; 

} 

finalCongestionTime = finalCongestionTime + tempTime; 
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 }   

 return finalCongestionTime; 

} 

 

int congestionTimeVehicle(int timeSed){ 

 int i; 

 int tempTime = 0; 

 int finalCongestionTime = 0; 

 for(i = 0; i < (NUMBER_OF_CONGESTION / 2); i++){  

  srand(timeSed + i); 

  if((timeSed + i + tempTime)%2==0){ 

   tempTime = rand()%40 + 30; 

  } 

  finalCongestionTime = finalCongestionTime + tempTime; 

 }  

 return finalCongestionTime; 

} 

 

 

int congestionTimeVehicleAP(int timeSed){ 

 int i; 

 int tempTime = 0; 

 int finalCongestionTime = 0; 

 tempTime = rand()%20;  
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 finalCongestionTime = finalCongestionTime + tempTime; 

 return finalCongestionTime; 

} 

 

int newTraveltime(int timeSeed){ 

 int result; 

 srand(timeSeed); 

 result = rand()%30 + 70; 

 return result; 

} 

 

float randomProbability(int timeSeed){ 

 float result; 

 srand(timeSeed); 

 result = (rand()%8 + 1)/10.0; 

 return result; 

} 

 

void createArcsMatrix(PGraphMatrix pGraph){ 

 int i; 

 int j; 

 int tempTravelTime; 

 time_t t; 

 srand((unsigned)time(&t)); 
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 FILE *fp = fopen("travelTime.txt","w"); 

 if(!fp){ 

  printf("create and open file failed\n"); 

 } 

 pGraph->vertexNum = DEFAULT_VERTEX_NUM; 

 for(i = 0; i < pGraph->vertexNum; i++){ 

  pGraph->vertex[i].vertexID = i; 

  pGraph->vertex[i].numberOfVehicle = 0; 

 } 

 for(i = 0; i < pGraph->vertexNum; i++){ 

  for(j = 0; j < pGraph->vertexNum; j++){ 

   pGraph->arcsMatrix[i][j].travelTime = INIFINITE; 

  } 

 } 

 for(i = 0; i < (DEFAULT_VERTEX_NUM - (int) 

sqrt(DEFAULT_VERTEX_NUM)); i++){ 

  if(((i % (int) sqrt(DEFAULT_VERTEX_NUM)) == (int) 

sqrt(DEFAULT_VERTEX_NUM) - 1)){ 

   tempTravelTime = randomTime(); 

   pGraph->arcsMatrix[i][i + (int) 

sqrt(DEFAULT_VERTEX_NUM)].travelTime = tempTravelTime; 

   pGraph->arcsMatrix[i + (int) 

sqrt(DEFAULT_VERTEX_NUM)][i].travelTime = tempTravelTime; 

  } 

  else{ 
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tempTravelTime = randomTime(); 

pGraph->arcsMatrix[i][i + 1].travelTime = tempTravelTime; 

pGraph->arcsMatrix[i + 1][i].travelTime = tempTravelTime; 

tempTravelTime = randomTime(); 

pGraph->arcsMatrix[i][i + (int) 

sqrt(DEFAULT_VERTEX_NUM)].travelTime = tempTravelTime; 

pGraph->arcsMatrix[i + (int) 

sqrt(DEFAULT_VERTEX_NUM)][i].travelTime = tempTravelTime; 

} 

} 

for(i = DEFAULT_VERTEX_NUM - sqrt(DEFAULT_VERTEX_NUM); i < 

DEFAULT_VERTEX_NUM - 1; i++){ 

tempTravelTime = randomTime(); 

pGraph->arcsMatrix[i][i + 1].travelTime = tempTravelTime; 

pGraph->arcsMatrix[i + 1][i].travelTime = tempTravelTime; 

} 

for(i = 0; i < pGraph->vertexNum; i++){ 

for(j = 0; j < pGraph->vertexNum; j++){ 

if(j < pGraph->vertexNum - 1){ 

fprintf(fp,"%d,",pGraph->arcsMatrix[i][j].travelTime); 

} 

else{ 

fprintf(fp,"%d\n",pGraph->arcsMatrix[i][j].travelTime); 
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   } 

  } 

 } 

 fclose(fp); 

} 

 

SourceDestination generateSourceDestinationPoint(GraphMatrix pGraph){ 

 GraphMatrix temppGraph = pGraph; 

 SourceDestination tempSourceDestination; 

 int i; 

 int j; 

 int k; 

 int temp; 

 int tempID; 

 int topTempID[NUMBER_OF_SOURCE]; 

 int bottomtTempID[NUMBER_OF_SOURCE];  

 int temRandom = 0; 

 int repeat = 0; 

 int sideLength; 

 time_t t; 

 srand((unsigned)time(&t)); 

 int frontTopID_Source; 

 int backTopID_Source; 

 int frontTopID_Destination; 
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int backTopID_Destination; 

int frontBottomID_Source; 

int backBottomID_Source; 

int frontBottomID_Destination; 

int backBottomID_Destination; 

sideLength = (int)sqrt(DEFAULT_VERTEX_NUM); 

frontTopID_Source = (sideLength/2 - 1)*sideLength; 

backTopID_Source = frontTopID_Source + (sideLength - 1); 

tempSourceDestination.topID = backTopID_Source; 

frontTopID_Destination = 0; 

backTopID_Destination = frontTopID_Destination + (sideLength - 1); 

frontBottomID_Source = (sideLength/2)*sideLength; 

backBottomID_Source = frontBottomID_Source + (sideLength - 1); 

tempSourceDestination.bottomID = frontBottomID_Source; 

frontBottomID_Destination = (sideLength - 1)*sideLength; 

backBottomID_Destination = frontBottomID_Destination + (sideLength - 1); 

//TOP:generate the source point 

for(i = 0; i < NUMBER_OF_SOURCE; i++){ 

repeat = 0; 

temRandom = rand()%((backTopID_Source-RANGE)-

(frontTopID_Source+RANGE)+1)+(frontTopID_Source+RANGE); 
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   for(j = 0; j < i; j++){ 

    if(temRandom == 

tempSourceDestination.topSource[j]){ 

     repeat = 1; 

     break; 

    }  

   } 

   if(repeat == 0){ 

     tempSourceDestination.topSource[i] = temRandom; 

   } 

   else{ 

     i = i - 1; 

   } 

 } 

 //TOP:generate the destination point 

 for(i = 0; i < NUMBER_OF_DESTINATION; i++){ 

   repeat = 0; 

   temRandom = rand()%((backTopID_Destination-RANGE)-

(frontTopID_Destination+RANGE)+1)+(frontTopID_Destination+RANGE); 

   for(j = 0; j < i; j++){ 

    if(temRandom == 

tempSourceDestination.topDestination[j]){ 

     repeat = 1; 

     break; 
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} 

} 

if(repeat == 0){ 

tempSourceDestination.topDestination[i] = temRandom; 

} 

else{ 

i = i - 1; 

} 

} 

//BOTTOM:generate the source point and assign the number of vehicle to it 

for(i = 0; i < NUMBER_OF_SOURCE; i++){ 

repeat = 0; 

temRandom = rand()%((backBottomID_Source-RANGE)-

(frontBottomID_Source+RANGE)+1)+(frontBottomID_Source+RANGE); 

for(j = 0; j < i; j++){ 

if(temRandom == 

tempSourceDestination.bottomSource[j]){ 

repeat = 1; 

break; 

} 

} 

if(repeat == 0){ 

 tempSourceDestination.bottomSource[i] = temRandom; 

} 
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   else{ 

     i = i - 1; 

   } 

 } 

 //BOTTOM:generate the destination point 

 for(i = 0; i < NUMBER_OF_DESTINATION; i++){ 

   repeat = 0; 

   temRandom = rand()%((backBottomID_Destination-RANGE)-

(frontBottomID_Destination+RANGE)+1)+(frontBottomID_Destination+RANGE); 

   for(j = 0; j < i; j++){ 

    if(temRandom == 

tempSourceDestination.bottomDestination[j]){ 

     repeat = 1; 

     break; 

    } 

   } 

   if(repeat == 0){ 

    tempSourceDestination.bottomDestination[i] = 

temRandom; 

   } 

   else{ 

    i = i -1; 

   } 

 } 
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 return tempSourceDestination; 

} 

 

TimeCommunication topDijkstraAlgorithm_Ideal(GraphMatrix pGraph, int source, int 

destination, int backTopID_Source){ 

 GraphMatrix tempToppGraph = pGraph; 

 TimeCommunication tempTimeCommunication; 

 int i; 

 int j; 

 int buffer; 

 int topID = backTopID_Source + 1; 

 int flag[topID]; 

 int shortestPath[topID]; 

 int tempMinWeight; 

 int tempMinID; 

 int temp; 

 int topTempTravelTimeMatrix[topID][topID]; 

 Queue *record[topID]; 

 for(i = 0; i < topID; i++){ 

  for(j = 0; j < topID; j++){ 

   topTempTravelTimeMatrix[i][j] = 

tempToppGraph.arcsMatrix[i][j].travelTime; 

  } 
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} 

for(i = 0; i < topID; i++){ 

flag[i] = 0; 

shortestPath[i] = topTempTravelTimeMatrix[source][i]; 

record[i] = InitQueue(); 

EnQueue(record[i], source); 

} 

flag[source] = -1; 

shortestPath[source] = 0; 

for(i = 1; i < topID; i++){ 

tempMinWeight = INIFINITE; 

for(j = 0; j < topID; j++){ 

if(flag[j] != -1 && shortestPath[j] < tempMinWeight){ 

tempMinWeight = shortestPath[j]; 

tempMinID = j; 

} 

} 

flag[tempMinID] = -1; 

EnQueue(record[tempMinID],tempMinID); 

for(j = 0; j < topID; j++){ 

temp = tempMinWeight + 

topTempTravelTimeMatrix[tempMinID][j]; 

if(j != source && temp < shortestPath[j]){ 
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    shortestPath[j] = temp; 

    ClearQueue(record[j]); 

    EnQueue(record[j], source); 

    buffer = DeQueue(record[tempMinID]); 

    EnQueue(record[tempMinID], buffer); 

    while(GetFront(record[tempMinID]) != source){ 

     buffer = DeQueue(record[tempMinID]); 

                        EnQueue(record[j], buffer); 

                        EnQueue(record[tempMinID], buffer); 

    } 

   } 

  } 

 } 

 for(i=0;i<topID;i++){ 

  DestroyQueue(record[i]); 

 } 

 tempTimeCommunication.time =  shortestPath[destination]; 

 tempTimeCommunication.APcommunication = 

tempToppGraph.vertex[source].numberOfVehicle*NUMBER_OF_ACCESSPOINT; 

 return tempTimeCommunication; 

} 

 

TimeCommunication bottomDijkstraAlgorithm_Ideal(GraphMatrix pGraph, int 

source, int destination, int downTempID){ 
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GraphMatrix tempBottompGraph = pGraph; 

TimeCommunication tempTimeCommunication; 

int i; 

int j; 

int buffer; 

int flag[DEFAULT_VERTEX_NUM-downTempID]; 

int shortestPath[DEFAULT_VERTEX_NUM-downTempID]; 

int tempMinWeight; 

int tempMinID; 

int temp; 

int bottomTempTravelTimeMatrix[DEFAULT_VERTEX_NUM-

downTempID][DEFAULT_VERTEX_NUM-downTempID]; 

Queue *record[DEFAULT_VERTEX_NUM-downTempID]; 

for(i = downTempID; i < DEFAULT_VERTEX_NUM; i++){ 

for(j = downTempID; j < DEFAULT_VERTEX_NUM; j++){ 

bottomTempTravelTimeMatrix[i - downTempID][j - 

downTempID] = tempBottompGraph.arcsMatrix[i][j].travelTime; 

} 

} 

for(i = 0; i < DEFAULT_VERTEX_NUM-downTempID; i++){ 

flag[i] = 0; 

shortestPath[i] = bottomTempTravelTimeMatrix[source-

downTempID][i]; 

record[i] = InitQueue(); 
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  EnQueue(record[i], source); 

 } 

 flag[source-downTempID] = -1; 

 shortestPath[source-downTempID] = 0; 

 for(i = 1; i < DEFAULT_VERTEX_NUM-downTempID; i++){ 

  tempMinWeight = INIFINITE; 

  for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){ 

   if(flag[j] != -1 && shortestPath[j] < tempMinWeight){ 

    tempMinWeight = shortestPath[j]; 

    tempMinID = j; 

   } 

  } 

  flag[tempMinID] = -1; 

  EnQueue(record[tempMinID],tempMinID+downTempID); 

  for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){ 

   temp = tempMinWeight + 

bottomTempTravelTimeMatrix[tempMinID][j]; 

   if(j != source && temp < shortestPath[j]){ 

    shortestPath[j] = temp; 

    ClearQueue(record[j]); 

    EnQueue(record[j], source); 

    buffer = DeQueue(record[tempMinID]); 

    EnQueue(record[tempMinID], buffer); 

    while(GetFront(record[tempMinID]) != source){ 
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     buffer = DeQueue(record[tempMinID]); 

                      EnQueue(record[j], buffer); 

                        EnQueue(record[tempMinID], buffer); 

    } 

   } 

  } 

 } 

 for(i = 0; i < DEFAULT_VERTEX_NUM-downTempID; i++){ 

  DestroyQueue(record[i]); 

 } 

 tempTimeCommunication.time =  shortestPath[destination-downTempID]; 

 tempTimeCommunication.APcommunication = 

tempBottompGraph.vertex[source].numberOfVehicle*NUMBER_OF_ACCESSPOIN

T; 

 return tempTimeCommunication; 

} 

 

PathInfo topDijkstraAlgorithm_PathSearch(GraphMatrix pGraph, int source, int 

destination, int backTopID_Source){ 

 GraphMatrix tempToppGraph = pGraph; 

 PathInfo tempPathInfo; 

 int i; 

 int j; 

 int buffer; 
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int topID = backTopID_Source + 1; 

int flag[topID]; 

int shortestPath[topID]; 

int tempMinWeight; 

int tempMinID; 

int temp; 

int *trace = NULL; 

int topTempTravelTimeMatrix[topID][topID]; 

Queue *record[topID]; 

for(i = 0; i < topID; i++){ 

for(j = 0; j < topID; j++){ 

topTempTravelTimeMatrix[i][j] = 

tempToppGraph.arcsMatrix[i][j].travelTime; 

} 

} 

for(i = 0; i < topID; i++){ 

flag[i] = 0; 

shortestPath[i] = topTempTravelTimeMatrix[source][i]; 

record[i] = InitQueue(); 

EnQueue(record[i], source); 

} 

flag[source] = -1; 

shortestPath[source] = 0; 

for(i = 1; i < topID; i++){ 
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  tempMinWeight = INIFINITE; 

  for(j = 0; j < topID; j++){ 

   if(flag[j] != -1 && shortestPath[j] < tempMinWeight){ 

    tempMinWeight = shortestPath[j]; 

    tempMinID = j; 

   } 

  } 

  flag[tempMinID] = -1; 

  EnQueue(record[tempMinID],tempMinID); 

  for(j = 0; j < topID; j++){ 

   temp = tempMinWeight + 

topTempTravelTimeMatrix[tempMinID][j]; 

   if(j != source && temp < shortestPath[j]){ 

    shortestPath[j] = temp; 

    ClearQueue(record[j]); 

    EnQueue(record[j], source); 

    buffer = DeQueue(record[tempMinID]); 

    EnQueue(record[tempMinID], buffer); 

    while(GetFront(record[tempMinID]) != source){ 

     buffer = DeQueue(record[tempMinID]); 

                    EnQueue(record[j], buffer); 

                    EnQueue(record[tempMinID], buffer); 

    } 

   } 
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} 

} 

tempPathInfo.pathSize = GetSize(record[destination]); 

tempPathInfo.pathTime =  shortestPath[destination]; 

tempPathInfo.pathPointer = (int *)malloc(tempPathInfo.pathSize*sizeof(int)); 

for(i = 0; i < tempPathInfo.pathSize; i++){ 

tempPathInfo.pathPointer[i] = DeQueue(record[destination]); 

} 

for(i=0;i<topID;i++){ 

if(i != destination){ 

DestroyQueue(record[i]); 

} 

} 

return tempPathInfo; 

} 

PathInfo bottomDijkstraAlgorithm_PathSearch(GraphMatrix pGraph, int source, int 

destination, int downTempID){ 

GraphMatrix tempBottompGraph = pGraph; 

PathInfo tempPathInfo; 

int i; 

int j; 
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int buffer; 

int flag[DEFAULT_VERTEX_NUM-downTempID]; 

int shortestPath[DEFAULT_VERTEX_NUM-downTempID]; 

int tempMinWeight; 

int tempMinID; 

int temp; 

int *trace = NULL; 

int bottomTempTravelTimeMatrix[DEFAULT_VERTEX_NUM-

downTempID][DEFAULT_VERTEX_NUM-downTempID]; 

Queue *record[DEFAULT_VERTEX_NUM-downTempID]; 

for(i = downTempID; i < DEFAULT_VERTEX_NUM; i++){ 

for(j = downTempID; j < DEFAULT_VERTEX_NUM; j++){ 

bottomTempTravelTimeMatrix[i - downTempID][j - 

downTempID] = tempBottompGraph.arcsMatrix[i][j].travelTime; 

} 

} 

for(i = 0; i < DEFAULT_VERTEX_NUM-downTempID; i++){ 

flag[i] = 0; 

shortestPath[i] = bottomTempTravelTimeMatrix[source-

downTempID][i]; 

record[i] = InitQueue(); 

EnQueue(record[i], source); 

} 

flag[source-downTempID] = -1; 
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 shortestPath[source-downTempID] = 0; 

 for(i = 1; i < DEFAULT_VERTEX_NUM-downTempID; i++){ 

  tempMinWeight = INIFINITE; 

  for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){ 

   if(flag[j] != -1 && shortestPath[j] < tempMinWeight){ 

    tempMinWeight = shortestPath[j]; 

    tempMinID = j; 

   } 

  } 

  flag[tempMinID] = -1; 

  EnQueue(record[tempMinID],tempMinID+downTempID); 

 

  for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){ 

   temp = tempMinWeight + 

bottomTempTravelTimeMatrix[tempMinID][j]; 

   if(j != source && temp < shortestPath[j]){ 

    shortestPath[j] = temp; 

    ClearQueue(record[j]); 

    EnQueue(record[j], source); 

    buffer = DeQueue(record[tempMinID]); 

    EnQueue(record[tempMinID], buffer); 

    while(GetFront(record[tempMinID]) != source){ 

     buffer = DeQueue(record[tempMinID]); 

                        EnQueue(record[j], buffer); 
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 EnQueue(record[tempMinID], buffer); 

} 

} 

} 

} 

tempPathInfo.pathSize = GetSize(record[destination-downTempID]); 

tempPathInfo.pathTime =  shortestPath[destination-downTempID]; 

tempPathInfo.pathPointer = (int *)malloc(tempPathInfo.pathSize*sizeof(int)); 

for(i = 0; i < tempPathInfo.pathSize; i++){ 

tempPathInfo.pathPointer[i] = DeQueue(record[destination-

downTempID]); 

} 

for(i = 0; i < DEFAULT_VERTEX_NUM-downTempID; i++){ 

if(i != (destination-downTempID)){ 

DestroyQueue(record[i]); 

} 

} 

return tempPathInfo; 

} 

TimeCommunication topDijkstraAlgorithm_CongestionAvoidance(GraphMatrix 

pGraph, int source, int destination, int backTopID_Source, PathInfo pathInformation, 

int *accessPointP){ 

GraphMatrix tempToppGraph = pGraph; 
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TimeCommunication tempTimeCommunication; 

PathInfo tempPathInformation = pathInformation; 

int *tempAccessPointP = accessPointP; 

int i; 

int j; 

int k; 

int buffer; 

int count = 0; 

int topID = backTopID_Source + 1; 

int flag[topID]; 

int shortestPath[topID]; 

int tempMinWeight; 

int tempMinID; 

int temp; 

int newSource; 

int numOfAP; 

int queueSize; 

int *trace = NULL; 

int topTempTravelTimeMatrix[topID][topID]; 

Queue *record[topID]; 

newSource = tempPathInformation.pathPointer[1]; 

numOfAP = NUMBER_OF_SOURCE * NUMBER_OF_ACCESSPOINT * 2; 

for(i = 0; i < topID; i++){ 

for(j = 0; j < topID; j++){ 
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   topTempTravelTimeMatrix[i][j] = 

tempToppGraph.arcsMatrix[i][j].travelTime; 

  } 

 } 

 for(i = 0; i < topID; i++){ 

  flag[i] = 0; 

  shortestPath[i] = topTempTravelTimeMatrix[newSource][i]; 

  record[i] = InitQueue(); 

  EnQueue(record[i], newSource); 

 } 

 flag[newSource] = -1; 

 shortestPath[newSource] = 0; 

 for(i = 1; i < topID; i++){ 

  tempMinWeight = INIFINITE; 

  for(j = 0; j < topID; j++){ 

   if(flag[j] != -1 && shortestPath[j] < tempMinWeight){ 

    tempMinWeight = shortestPath[j]; 

    tempMinID = j; 

   } 

  } 

  flag[tempMinID] = -1; 

  EnQueue(record[tempMinID],tempMinID); 

    

  for(j = 0; j < topID; j++){ 
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   temp = tempMinWeight + 

topTempTravelTimeMatrix[tempMinID][j]; 

   if(j != newSource && temp < shortestPath[j]){ 

    shortestPath[j] = temp; 

    ClearQueue(record[j]); 

    EnQueue(record[j], newSource); 

    buffer = DeQueue(record[tempMinID]); 

    EnQueue(record[tempMinID], buffer); 

    while(GetFront(record[tempMinID]) != newSource){ 

     buffer = DeQueue(record[tempMinID]); 

                        EnQueue(record[j], buffer); 

                        EnQueue(record[tempMinID], buffer); 

    } 

   } 

  } 

 } 

 queueSize = GetSize(record[destination]); 

 trace = (int *)malloc(queueSize*sizeof(int)); 

 for(i = 0; i < queueSize; i++){ 

  trace[i] = DeQueue(record[destination]); 

 } 

  

 for(i = 0; i < numOfAP; i++){ 

  for(j = 0; j < queueSize; j++){ 
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if(tempAccessPointP[i] == trace[j]){ 

count++; 

} 

} 

} 

tempTimeCommunication.time = shortestPath[destination] + 

topTempTravelTimeMatrix[tempPathInformation.pathPointer[0]][tempPathInformatio

n.pathPointer[1]];

tempTimeCommunication.APcommunication = 0; 

tempTimeCommunication.Vcommunication = 0; 

for(i = 0; i < count; i++){ 

tempTimeCommunication.APcommunication = 

randomProbability(tempTimeCommunication.time + 

i)*tempToppGraph.vertex[source].numberOfVehicle + 

tempTimeCommunication.APcommunication; 

tempTimeCommunication.Vcommunication = (1 - 

randomProbability(tempTimeCommunication.time + 

i))*tempToppGraph.vertex[source].numberOfVehicle + 

tempTimeCommunication.Vcommunication; 

} 

tempTimeCommunication.Totalcommunication = 

tempToppGraph.vertex[source].numberOfVehicle * count; 

free(trace); 

return tempTimeCommunication; 

} 
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TimeCommunication bottomDijkstraAlgorithm_CongestionAvoidance(GraphMatrix 

pGraph, int source, int destination, int downTempID, PathInfo pathInformation, int 

*accessPointP){ 

 GraphMatrix tempBottompGraph = pGraph; 

 TimeCommunication tempTimeCommunication; 

 PathInfo tempPathInformation = pathInformation; 

 int *tempAccessPointP = accessPointP; 

 int i; 

 int j; 

 int k; 

 int buffer; 

 int count = 0; 

 int flag[DEFAULT_VERTEX_NUM-downTempID]; 

 int shortestPath[DEFAULT_VERTEX_NUM-downTempID]; 

 int tempMinWeight; 

 int tempMinID; 

 int temp; 

 int newSource; 

 int numOfAP; 

 int queueSize; 

 int *trace = NULL; 

 int bottomTempTravelTimeMatrix[DEFAULT_VERTEX_NUM-

downTempID][DEFAULT_VERTEX_NUM-downTempID]; 
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 Queue *record[DEFAULT_VERTEX_NUM-downTempID]; 

 newSource = tempPathInformation.pathPointer[1]; 

 numOfAP = NUMBER_OF_SOURCE * NUMBER_OF_ACCESSPOINT * 2; 

 for(i = downTempID; i < DEFAULT_VERTEX_NUM; i++){ 

  for(j = downTempID; j < DEFAULT_VERTEX_NUM; j++){ 

   bottomTempTravelTimeMatrix[i - downTempID][j - 

downTempID] = tempBottompGraph.arcsMatrix[i][j].travelTime; 

  } 

 } 

 for(i = 0; i < DEFAULT_VERTEX_NUM-downTempID; i++){ 

  flag[i] = 0; 

  shortestPath[i] = bottomTempTravelTimeMatrix[newSource-

downTempID][i]; 

  record[i] = InitQueue(); 

  EnQueue(record[i], newSource); 

 } 

 flag[newSource-downTempID] = -1; 

 shortestPath[newSource-downTempID] = 0; 

 for(i = 1; i < DEFAULT_VERTEX_NUM-downTempID; i++){ 

  tempMinWeight = INIFINITE; 

  for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){ 

   if(flag[j] != -1 && shortestPath[j] < tempMinWeight){ 

    tempMinWeight = shortestPath[j]; 

    tempMinID = j; 
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} 

} 

flag[tempMinID] = -1; 

EnQueue(record[tempMinID],tempMinID+downTempID); 

for(j = 0; j < DEFAULT_VERTEX_NUM-downTempID; j++){ 

temp = tempMinWeight + 

bottomTempTravelTimeMatrix[tempMinID][j]; 

if(j != newSource && temp < shortestPath[j]){ 

shortestPath[j] = temp; 

ClearQueue(record[j]); 

EnQueue(record[j], newSource); 

buffer = DeQueue(record[tempMinID]); 

EnQueue(record[tempMinID], buffer); 

while(GetFront(record[tempMinID]) != newSource){ 

buffer = DeQueue(record[tempMinID]); 

EnQueue(record[j], buffer); 

EnQueue(record[tempMinID], buffer); 

} 

} 

} 

} 

queueSize = GetSize(record[destination-downTempID]); 

trace = (int *)malloc(queueSize*sizeof(int)); 

for(i = 0; i < queueSize; i++){ 
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  trace[i] = DeQueue(record[destination-downTempID]); 

 } 

 for(i = 0; i < numOfAP; i++){  

  for(j = 0; j < queueSize; j++){ 

   if(tempAccessPointP[i] == trace[j]){  

    count++; 

   } 

  }  

 } 

  

 tempTimeCommunication.time = shortestPath[destination-downTempID] + 

bottomTempTravelTimeMatrix[tempPathInformation.pathPointer[0] - 

downTempID][tempPathInformation.pathPointer[1] - downTempID]; 

 tempTimeCommunication.APcommunication = 0; 

 tempTimeCommunication.Vcommunication = 0; 

 for(i = 0; i < count; i++){ 

  tempTimeCommunication.APcommunication = 

randomProbability(tempTimeCommunication.time + 

i)*tempBottompGraph.vertex[source].numberOfVehicle + 

tempTimeCommunication.APcommunication; 

  tempTimeCommunication.Vcommunication = (1 - 

randomProbability(tempTimeCommunication.time + 

i))*tempBottompGraph.vertex[source].numberOfVehicle + 

tempTimeCommunication.Vcommunication; 

 } 
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tempTimeCommunication.Totalcommunication = 

tempBottompGraph.vertex[source].numberOfVehicle * count; 

free(trace); 

return tempTimeCommunication; 

} 
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