Probabilistic Cooperative Caching-Based
Content Subscribing in Opportunistic Mobile
Networks

T?2WISTOR: TTU WIRELESS MOBILE NETWORKING LABORATORY
TECHNICAL REPORT TR-01-2017

Bitao Peng!, Sunho Lim?, Byungkwan Jung?, Cong Pu®, Xinying Qiu', and
Manki Min*

1 Cisco School of Informatics, Guangdong University of Foreign Studies, China
pengbitao@gdufs.edu.cn, 201010021@oamail.gdufs.edu.cn
2 Dept. of Computer Science, Texas Tech University, Lubbock, TX 79409
{sunho.lim, byung.jung}@ttu.edu
3 Weisberg Division of Computer Science, Marshall University, Huntington, WV
25755
puc@marshall.edu
4 Dept. of Electrical Engineering and Computer Science, South Dakota State
University, Brookings, SD 57007
manki.min@sdstate.edu

Abstract. Publish/subscribe (pub/sub) based data access techniques
have been actively researched in opportunistic mobile networks (Opp-
Nets) that can be characterized by the intermittent connectivity and
limited network capacity. Because of time-varying network topologies
due to the node mobility, it becomes an issue to guarantee end-to-end
path for seamless communication. In this paper, we propose a probabilis-
tic cooperative caching based content subscribing scheme, called PCC, to
enhance data availability and accessibility in OppNets. We first present
the basic pub/sub based operations and their corresponding information
to be maintained and exchanged. Then we measure the expected data
delivery latency as a basis for the data utility and define a data util-
ity function based on the time-to-live of data and data delivery latency.
We further refine exchanging the data using a multi-objective linear pro-
gramming and propose a heuristic approach to cooperatively cache the
data among nodes. We conduct extensive simulation experiments for
performance comparison using the opportunistic network environment
simulator (ONE). The simulation results show that our scheme outper-
forms other three existing schemes (i.e., Ad hoc Podcasting, Content
Place, and Least TTL) in terms of delay, number of delivered data, and
number of hops, and indicate that our scheme can be a viable approach
in OppNets.

1 Introduction

Opportunistic mobile networks (OppNets) characterized by intermittent con-
nectivity and limited network capacity can be categorized into delay tolerant
networks (DTNs) [1]. As mobile and wireless devices (later in short, nodes)
equipped with the advanced communication capability become increasingly pop-
ular and prevalent, OppNets are rapidly emerging as an alternative to conven-
tional infrastructure-based communication. To enhance data availability and ac-
cessibility, nodes often deploy a publish/subscribe (pub/sub) based scheme to
exchange data upon encountering one another. In the pub/sub, nodes play a
role as a publisher, a subscriber, or an intermediate forwarder. A publisher ad-
vertises its data subject and produces data item but a subscriber requests and
consumes data based on its own interests. When nodes are encountered one
another, the publisher can deliver data to the subscriber directly or indirectly
through multi-hop relays using intermediate forwarders. Due to the mobility of
nodes, however, it is not trivial to guarantee end-to-end path for communication
in constantly varying network topologies.

In light of this, we propose a probabilistic cooperative caching-based content
subscribing scheme, called PCC. The PCC is a pub/sub based data dissemination
approach that considers the inter-contact time, data utility, and data freshness.
The basic idea is that whenever nodes encounter one another, they exchange the
data that can maximize the data utility based on the data freshness and data
delivery latency. Under the constraint of storage space, nodes further optimize
to cache the data. Our contribution is summarized in three-fold:

— First, we present three basic pub/sub based operations and their correspond-
ing information to be maintained and exchanged for encountered nodes, in
terms of subscribing channels, publishing data, and delivering subscribed
data.

— Second, we develop three major operations to realize the PCC: expected
data delivery latency, data utility function, and data utility optimization. We
measure the expected data delivery latency as a basis to compute the data
utility. We also define a data utility function to judiciously exchange the data
and maximize the data utility based on the data freshness and data delivery
latency. We further optimize exchanging the data using a multi-objective
linear programming and propose a heuristic approach for cooperative caching
to efficiently access the data directly and indirectly.

— Third, we revisit three existing schemes (i.e., Ad hoc Podcasting [2], Content-
Place [3], and Least TTL), modify them to work in our testbed, and evaluate
them with the PCC for performance comparison.

We conduct extensive simulation experiments using the opportunistic network
environment simulator (ONE) [4] for performance evaluation and multi-dimensional
analysis. Simulation results show that the PCC outperforms other existing schemes
in terms of average packet delay, number of delivered packets, and average num-
ber of hops.

The rest of paper is organized as follows. Section 2 reviews the related work.
Section 3 presents the system model and proposed approach. Section 4 devotes
comprehensive performance evaluation and analysis. Finally, Section 5 concludes
the paper with future work.

2 Related Work

Opportunistic data forwarding is a variant of epidemic routing, where nodes
exchange data which are not in common when they encounter one another in
intermittently connected networks [5]. In a spray-and-wait based approach [6],
nodes only forward a self-limited number of data to reduce the delay but improve
the energy efficiency. Since nodes often move and follow a mobility pattern, [7]
predicts a future node contact based on the frequency and history of contacts
to select the best data forwarder. [8] calculates the direct and indirect subscribe
values of data based on the contact history to maximize the content inventory.
With users’ social environment structure, it computes the relevance of data for
users and their social communities and then proposes a social-aware data for-
warding strategy. [9] proposes a pub/sub based forwarding scheme by considering
social behavior in OppNets, where a single broker is selected in the community
to center information. Unlike prior a single-layer social network, [10] defines a
multi-layer social network model by combining both on-line and off-line social
relationships to decide the data forwarding in OppNets.

In opportunistic data access, a pub/sub based scheme and its variants are
often deployed, where each subscriber and publisher declares its own interests
and registers its data, respectively. The PodNet project [11,12] and Content
Place [3] support users to subscribe a list of interests as well as to exchange
the data based on a pair-wise opportunistic contact. [8] deploys a Tit-For-Tit
scheme and proposes an incentive-driven strategy to deal with a selfish pub/sub
in OppNets. [13] investigates a broker node that forwards the data to nodes
according to their subscriptions.

Data utility has been used as a key index in opportunistic data management.
Each node caches data in a local storage based on the estimated utility [8, 14]. [8]
combines both direct and indirect subscribed data and considers the probability
of other nodes having a data copy to compute the data utility. [14] also considers
a ranked search to decide which data will be exchanged based on how strongly
other nodes desire for the data. Cooperative caching is an alternative way to
improve data availability and accessibility as well as to reduce the access delay
by storing a subset of data over multiple nodes. [15] presents a hierarchical
cooperative caching by virtually dividing a storage into three parts (i.e., self,
friends, and strangers) and considers the relationship between pair-wise nodes
to differentiate caching strategies.

In summary, diverse approaches have been proposed but little attention has
been paid for a probabilistic cooperative caching-based content subscribing in
the realm of OppNets.

i
i Subscriber
RO

Fig. 1. A snapshot of simple pub/sub based communication in an OppNet, where vy
publishes the data (e.g., m1 and m2) that belong to a channel ¢; what vg subscribes.
When v; opportunistically encounters vz, it can send both m; and ms to ve through
multi-hop relays, e.g., forwarded by v2 and vs4.

Publisher @"
c,(my, m,) ~

3 Probabilistic Cooperative Caching based Content
Subscribing

In this section, we first present a system model and then propose a probabilistic
cooperative caching-based content subscribing scheme, called PCC.

3.1 Pub/Sub based System Model

We deploy a pub/sub based communication model, where a set of nodes is uni-
formly distributed in an OppNet. Each node can independently produce data as
a publisher and request and consume data as a subscriber as well. In this paper,
we assume that published data can be classified into one of the subjects what
node is interest in, called channel, such as real-time traffic information, stock,
weather, music, etc. Nodes may request a set of channels that they are interested
in but may not know what channels other nodes publish. We also assume that
once a node requests the set of channels then it will not change them during the
communication. For example, Fig. 1 shows a snapshot of simple pub/sub oper-
ation in an OppNet that can be represented as an undirected graph G(V, E),
where V' = {v;}, E = {e;; | (vi,vj) Ai # j}, and 7 and j range from 1 to n,
respectively. Here, n is the total number nodes in the network. Without loss of
generality, we set a weight w; ; to every edge e; ; as an average inter-contact
time between two nodes based on the contact history. In this model, we present
three basic pub/sub based operations: (i) subscribing channels; (ii) publishing
data; and (iii) delivering subscribed data. In subscribing channel, when nodes
encounter one another, each node exchanges its own channel lists containing
what it is interested in and what it has collected from prior contacted nodes.
Each node maintains a subscription table (ST), where each entry consists of
two components: node id and a set of subscribed channels, ST = [v4, {cia}]-
For example, v; initially has a single entry [v;, {¢;}] in the ST, where {¢;} is
a set of subscribed channels what v; is interested, and the table will gradually
have more entries as v; encounters other nodes. When v; encounters v;, each
node exchanges its channel lists. If v; already has the channel list of v; (e.g.,

Notations:
® ST, [vid,{cia}]: A subscription table in a node vq, where v;q and {c;q} are a channel
subscribed node id and a set of subscribed channel ids, respectively.
e DT,[miq, cia,t]: A data digest table in a node vq, where m;q, c;q, and t are a data
id, a channel id, and a time-to-live of m;q4, respectively.
e DDTy[miq, Cid, gid, t]: A delivered data digest table in a node v, where miq, ¢idq,
gid, and t are a data id,node id, channel id, and a time-to-live of m;q, respectively.
o SUT4[miq,ut, size]: A sorted utility table in a node vq, where ut and size are the
data utility and size of data, m;q, respectively.
o pkt[Req,nid, m;q]: A data request packet sent from a node v,;q for data m;q.
¢ When v, encounters vp:

if ST, # STy

STe = ST, U (STy, — ST,);
for each c¢;¢r € STa[vp, {Cia}]
for each c;q» € DT, [mid, Cid, t}
if Cid! == Cyq'’
Forward pkt[Req, a, m;d] to vp;

© When vy receives pkt[Req, a, miq] from v,:

Forward m;q to v, and update DDTy;
© When v, (or vp) exchanges DDT, (or DDTy) with vy (or vg) :

vg (or vp) computes ut of SUT, (or SUT}) using Eq. 9;

Fig. 2. The pseudo code of the basic pub/sub based operations.

{¢j}), it does not update the table. In publishing data, when v; publishes data
(m), it sends a Data packet containing data id, published channel id that the
published data belongs to, and time-to-live (t), e.g., pkt[m;q, ciq, t]. In deliver-
ing subscribed data, after exchanging the channel lists, nodes search their local
cache and deliver corresponding data. Each node maintains a delivered data di-
gest table (DDT), where each entry consists of four components: delivered data
id, channel id, neighbor node id, and time-to-live (t), DDT = [m;4, Cid, Gid, t]-
Here, the data is valid during the ¢ period but its corresponding entry in the
DDT will be removed from the cache after the ¢ expires. Each node encountered
also sends the DDT to its neighbor nodes. Thus, nodes ultimately gather the
information about which data have been delivered to which nodes. In addition,
each node maintains a data digest table (DT) to exchange with encountered
nodes. The basic pub/sub based operations are summarized in Fig. 2.

3.2 Proposed Approach
The PCC is realized by conducting three major operations: (i) expected data

delivery latency; (ii) data utility function; and (iii) data utility optimization.

Expected Data Delivery Latency We first measure the expected data deliv-
ery latency as a basis to develop a data utility function and a data utility based

caching technique. The basic idea is that the expected data delivery latency can
be approximated by adding the inter-contact time of nodes located within the
path between source and destination nodes.

In this paper, we consider a weight w; ; between v; and v; is an average inter-
contact time, which is assumed to follow an exponential distribution and has been
shown and analyzed by many prior works[16]. Thus, the contact between v; and
v; remains a Poisson process with a contact frequency \; ;. Suppose a continuous
random variable X denotes the inter-contact time. Then its probability density
function can be expressed as,

e M g >0

o ={* 120)

For example, a source node (v1) sends a data packet to a destination node (v,,)
and the data is relayed by intermediate nodes, vy, where k = 2 to n — 1. We
denote X; as the inter-contact time between nodes v; and v;y1, and then the
data delivery latency from vy to v, can be expressed using a continuous random
variable Y below,

Y=X1+Xo+...+X,1. (2)

Here, Y is a hypo-exponential random variable and its probability density func-
tion can be expressed as,

n—1
fr(z) =Y Cin1die ™, (3)
i=1

where

s
Ci,nfl = H)_j _])\1
i#]

We also consider both direct and indirect data transfers through multi-hop relays
to measure the data delivery latency. For example, a source node (v;) can directly
send a data packet to a destination node (v,,) when it is encountered. Since the
network topology changes due to the node mobility, v; can indirectly send the
data packet to v, using intermediate nodes, v; or/and vy. In this paper, for
the sake of simplicity [17], we consider upto three-hop relays in the indirect
data transfer, because we have witnessed a significant increasing of computing
complexity in solving Eq. 3. The expected data delivery latency (F) of single-
hop (T;,,) and multi-hop (T; ;. and T; ; k) data transfers can be computed in
Egs. 4, 5, and 6 based on Eq. 3, respectively.

o 1
T;n = / /\i,ne*’\i’"“"x dr = . (4)
0 A

i,m

[Aj,n oA T Ai,j . o= AjnT
Tijm = Jo (52555 Nge 9% + 5 e VT)w da

Ajn 1 Aij 1 1 1
Ajn—Ai g Aij + Xig=Ajim Ajn Aiy L A (5)

1 1 1

Tijhon = — . 6
S i j + Ajk * Aken (©)

Since the data is transferred using the shortest path, the expected data delivery
latency between v; and v, should be the minimum latency among T} ,, T; ; »
and Tj j kns €.8., Eip = Min(Tin, Tijns Tijen)-

Data Utility Function Since each node has a limited storage space, it will
not blindly exchange data with any encountered node. In this paper, we define a
data utility function to judiciously decide whether to exchange data. The basic
idea is that we consider both time-to-live of data and expected data delivery
latency to maximize data access stored in a cache.

The data (m) utility, U,,, can be expressed as,

t
Up = Upze =T, (7)

where U is an initial data utility. F; ,, denotes the expected data delivery latency
from a source (v;) to a destination (v,). Both ¢ and T" denote the residual and

initial time-to-live, respectively. In Eq. 7, the differential form of U,,, dg:" =

%(1 +t)et=T=Fin > 0, implies that U,, reduces while ¢ reduces. If ¢ = 0, then
U,, = 0 and the m will be removed from the cache. If t = T and E;, = 0,
then U, has the initial data utility, U. The data utility is always greater than
or equal to zero, U,, > 0, and it is inversely proportional to the expected data
delivery latency. For example, if there are k number of nodes that are interested
in receiving the m, the data utility can be expressed as,

k
t @
Um:Z(U?et T=FEin), (8)
n=1

In addition, suppose a set of nodes located one-hop apart from v,, (g,) caches
a copy of the m. If v,, can receive the m from its one-hop neighbor nodes, then
the data utility of m cached in v; decreases. Thus, the data utility can finally be
revised as,
k
t s g
Un = Z(Ufet TP H (1= Prn(1)), (9)

d=1 kEgn

where Py () is the probability that v, receives the m from one of its one-hop
neighbor nodes (e.g., vi) during the ¢. This can also be expressed as,

t
Pon(t) = / NemeMn® d = 1 — At (10)
0

Data Utility Optimization We further consider how to optimize exchanging
data and propose a heuristic approach for cooperative caching between nodes to
efficiently access the data directly and indirectly. For example, when two nodes

(e.g., v, and vp) encounter each other, they exchange the information of cached
data. Note that each node in fact exchanges the ST with any encountered node
through the basic pub/sub operations and thus, it knows which node requests
what data. After exchanging the ST and DDT, each node computes the data
utility of its cached data using Eq. 9. Then each node begins to exchange the
data to maximize the benefit of accessing the data based on the following model.
Here, suppose v, and v, currently cache the k number of data, respectively.

k k
Maz Zy = i) 14U, + D51 Y1,jUb,j-

Zy =30 Taitlaq + 35—y Y2, (11)
s.t.
k k

D (@it @2i)si <Sa Y (Wit y2,)s; < Sp (12)

i=1 =1
ity <1 (i=) (13)
T2 < Y1, Yo,j < T1 (i=17) (14)
T1,i,%2,i,Y1,5, Y25 € [0,1] 1,7 € [1,n] (15)

Here, a cache size of v, and v is S, and Sy, respectively. u,; and up ; are the
data utility of data item ¢ (m;) and j (m;) of v, and vy, respectively. Decision
variables denote the m; will be (z1,; = 1 or z3; = 1) and will not be (z1; =0
or 2, = 0) stored in v,, respectively. Likewise, decision variables denotes the
m; will be (y1, = 1 or y2; = 1) and will not be (y1; = 0 or y2,; = 0) stored in
vp, respectively.

Eqg. 11 can lead to a multi-objective linear programming problem. The first
object Z; is used to maximize the data utility of all the £ number of data cached
in v, and vp. The second object Zs indicates that if there is available space in
the cache after the &k number of data are allocated, the data that can further
maximize the benefit in accessing data will be stored. Eq. 12 indicates that stored
data cannot exceed the cache size, where s; is the size of m;. Egs. 13 and 14
indicate that all the k number of data are stored in v, and vy, respectively.

Note that Eq. 11 is NP-hard because of its similarity to the 0-1 knapsack
problem. Thus, we solve the problem in a heuristic approach. According to the
data utility, we first sort all the & number of data cached in v, and vy, respec-
tively. Then we select a data item (e.g., m;) having the largest data utility and
store it in the corresponding node. Suppose the m; is stored in v,. We mark
m; as it has been processed in v,. We also select a data item (e.g., m;) having
the second largest data utility and store it in the corresponding node. Suppose
the m; is stored in v,. We also mark m; as it has been processed in v,. We
continue to allocate all the data based on the data utility until one of node’s
cache becomes full. For example, if the cache of v, is not full, the rest of data
will be allocated based on the data utility. If the cache of v, is still not full, the

Notations:
o SUT,[miq,ut, size], Sq, and Sy are defined before.
o T'T,[m;q]: A temporary table in a node v,, where a list of data packets are stored.
e T'S,: The total size of data packets stored in TTy,.
¢ When v, and v, optimize exchanging data to maximize the data utility:
while SUT, # 0 A SUT, # 0
/* Max returns the id of data packet having the largest ut. */
id" = Max(SUT,); id" = Max(SUT);
if SUT,[id'|.ut > SUT,[id""].ut
if TS, + SUT,[id].size < S, /* Eq. 12 */
TS, += STU,[id'].size; TT, = TT, U id’;
Remove m;y from SUT, and SUTy;
else
Remove m;q from SUT,;
else
if TSy + SUTy[id"].size < Sp /* Eq. 12 */
TSy += STUb[id”],size; T, =TT, U ’I:d”;
Remove m;q from SUT, and SUTy;
else
Remove m;q from SUTy;
© When v, maximizes the data utility based on TT5:
for m;q € TT),
Compute ut of SUT,[mq);
for m;q € SUT,
if TSq + SUTa[mid].size < Sq
TSa += STUqa[mia).size; TT, =TTy U mya;
Store the data packet in TTy;

Fig. 3. The pseudo code of major operations in the PCC.

data that are already allocated to v, will be allocated based on their data utility
to ve. Thus, v, and v, can allocate the data cooperatively and access them di-
rectly and indirectly with the minimized number of hops. The major operations
of PCC are summarized in Fig. 3.

4 Performance Evaluation

4.1 Testbed Setup

We conduct extensive simulation experiments using the opportunistic network
environments simulator (ONE) [4], which is originally developed to evaluate
the routing and application protocols in delay tolerant network (DTN) environ-
ments. We use an experimental trace, Infocom 06 [18], collected from realistic
environments to evaluate our performance. We set 10 channels in the network,
where each node subscribes a channel and generates data from the rest of nine
channels in random. The data generation rate follows a uniform distribution. In

Table 1. Simulation Parameters

lParameter ‘Value ‘
Cache size 1 Mb

Data size 10 to 125 Kb

Data generation rate|0.8 to 12 packets/hour
Data lifetime 8 x 10" to 18 x 10% secs
Number of nodes 98

the experiment, we use the first half of the traces for the learning process to ac-
quire the information of nodes’ inter-contact time and their subscribed channels.
Then the second half of the traces is used to conduct the performance evaluation
study. The major simulation parameters are summarized in Table 1.

We evaluate the PCC in terms of three performance metrics by changing
data lifetime, data size, and data generation rate: (i) average delay; (ii) average
number of delivered data; and (iii) average number of hops. We compare the
performance of PCC with three existing schemes:

— Ad hoc Podcasting [2]: A node first accepts all subscribed data from its
neighbor nodes and then randomly accepts the rest of data until its cache
becomes full.

— ContentPlace [3]: A node first accepts all subscribed data from its neighbor
nodes and then accepts the rest of data based on the data utility until its
cache becomes full.

— Least TTL: A node first accepts all subscribed data from its neighbor nodes
and then accepts the rest of data based on time-to-live (T'TL) until its cache
becomes full.

4.2 Performance Comparison

Impact of Different Lifetime We first change the data lifetime to evaluate the
performance. Intuitively, more data have a chance to be delivered to subscribed
nodes but it could incur the network traffic. In Subfig. 4(a), as the lifetime
increases from 8 x 10* to 18 x 10* secs, the average delay for delivering data
increases. The longer the lifetime is, the more data is delivered before they are
expired. In Subfig. 4(b), the number of delivered data increases with longer data
lifetime because more data have a chance to be delivered before they are expired
in the network. In Subfig. 4(c), the number of hops does not change much with
different lifetimes. As shown in Fig. 4, since the PCC caches the data with
high data utility and cooperatively shares them among nodes, it outperforms
three other schemes. The PCC tries to maximize the data utility when two
nodes are encountered. Although the TTL is an important factor to cache the
data, the PCC also considers the freshness of data and data utility. Thus, the
performance of the Least TTL is worse than that of the PCC. The Ad hoc
Podcasting shows the lowest performance because it does not consider the data

©
&

o)
~—~
? ko) (
>
o
<
E 8.5
[}
a
o &
2 A
Q O Ad hoc Podcasting
X7 —5-PCC I
A Least TTL
—— ContentPlace
7 ‘ ‘ : :
0.8 1 12 14 16 18
Data Lifetime (seconds) 10°
(a)
250 u u
O Ad hoc Podcasting
—5-PCC
L[A Least TTL]
% 240 —— ContentPlace |
X
3
a 230
-
o
o 2201
=
©
4
o 2101
q
200 : ‘ ‘ ‘
0.8 1 12 14 16 18
Data Lifetime (seconds) , 10°
(b)
5.4
O Ad hoc Podcasting
8 5.3t —8—PCC i
o ©] A Least TTL
I 5ol - —— ContentPlace
5
— . }
s}
=51 .
8 A O Q
:E, g 76} N
3 A A
4.9 ,
[b
o
o 4.&/8\9/5\8/
g
& 477
48 : ‘ ‘ ‘
.8 1 12 1.4 1.6 1.8
Data Lifetime (seconds) , 1¢°
(c)

Fig. 4. Performance of data access with different data lifetime. Here, data size and
data generation rate are set to 25 Kb and 2 packets/hour, respectively.

utility but randomly accepts data to store. In the ContentPlace, each node caches
the data with high data utility but does not consider to optimize the benefit in
accessing data with other nodes.

Impact of Data Size Second, we change the data size to evaluate the perfor-
mance. In Subfig. 5(a), the delay decreases as the data size increases. Based on
the data freshness, older data are discarded and this can contribute to reduce the
delay. In Subfig. 5(b), as the data size increases, the number of delivered data
decreases. Note that when the data size is 125 Kb, each node can maximumly
store eight data and thus, the number of delivered data becomes small. In Sub-
fig. 5(c), the number of hops is between 4 to 5.5 and it shows relatively stable
with different data sizes. As shown in Fig. 5, the PCC outperforms three other
schemes. The bigger the data size is, the better PCC performs. This is because
when the data size is small, nodes can cache all the received data. When the
data size increases, however, nodes selectively cache data. The PCC efficiently
exchanges the data and optimize the benefit in accessing data from other nodes
indirectly and thus, it can achieve better performance.

Impact of Data Generation Rate Third, we change the data generation
rate to evaluate the performance. In Subfig. 6(a), the delay decreases as the data
generation rate decreases because each node has a limited cache size. As the rate
increases, nodes tend to drop some cached data because of newly generated data.
When the rate is 0.8 packets/hour, nodes do not drop any new data generated
and thus, this can lead to the highest delay. In Subfig. 6(b), the number of
delivered data decreases as the rate decreases. In Subfig. 6(c), overall number
of hops are between 4.5 to 6. Similar to the results as shown in Figs. 4 and 5,
the PCC achieves better performance than that of other three schemes. The Ad
hoc Podcasting performs worst because nodes randomly store the data without
considering any data utility. Although both Least TTL and ContentPlace show
better performance than that of the Ad hoc Podcasting, they only consider the
locally optimized data utility for caching without considering the data cached in
other nodes.

5 Conclusion

In this paper, we proposed a probabilistic cooperative caching-based content sub-
scribing technique, called PCC, to achieve efficient data access in the pub/sub
based OppNets. We realized the PCC by measuring the expected data delivery
latency, building a data utility function, and conducting the data utility op-
timization. The PCC considers the inter-contact time, TTL, and other nodes’
access interests. The PCC efficiently exchanges the data to maximize the data
utility and optimizes the benefit in accessing data directly and indirectly. Exten-
sive simulation results showed that the PCC outperforms other three existing
schemes in terms of the delay, number of delivered data, and number of hops.

8.5

7.5F

O Ad hoc Podcasting
—&—PCC

A Least TTL
—— ContentPlace

25 50 75 100 125
Data Size (kb)
(a)

Average Delay (hours)

6.5
0

130

120¢

1107

100¢

901

80r

Delivered Packets

O Ad hoc Podcasting
—=-PCC

A Least TTL
—<— ContentPlace

701

‘ ‘ ‘ o)
25 50 75 100 125
Data Size (kb)
(b)

60
0

55

O Ad hoc Podcasting
—8-PCC A

A Least TTL
—*— ContentPlace

4.5¢

Average Number of Hops

0 25 50 75 100 125
Data Size (kb)
(c)

Fig. 5. Performance of data access with different data size. Here, data generation rate
and lifetime are set to 1 packet/hour and 18 x 10* secs, respectively.

O Ad hoc Podcasting
—H=—PCC
A Least TTL

©
3

—*— ContentPlace

[ee]

Average Delay (hours)
N &

o
[

% 2 4 6 8 10 12
Packet Generation Rate (packets/hour)
(a)

1200

O Ad hoc Podcasting
—=—PCC
1000f| A Least TTL
—<— ContentPlace

8007

6001

400}

Delivered Packets

200}

% 2 4 6 8 10 12
Packet Generation Rate (packets/hour)

(b)

O Ad hoc Podcasting
—8-PCC ZiN
A Least TTL)
—— ContentPlace

Average Number of Hops

4.5
0 2 4 6 8 10 12

Packet Generation Rate (packets/hour)
(c)

Fig. 6. Performance of data access with different packet generation rate. Here, data
size and lifetime are set to 25 Kb and 16 x 10 secs, respectively.

To see the full potential of our scheme, we are currently extending the basic
sub/pub operations and cooperative caching in terms of cache admission con-
trol and replacement policy to enhance data availability and accessibility in the

PCC.

Acknowledgment

This work is supported in part by China Scholarship Council and GuangDong
University of Foreign Studies (15T26).

References

1.

10.

11.

12.

13.

14.

W. Rao, K. Zhao, Y. Zhang, P. Hui, and S. Tarkoma, “Towards Maximizing Timely
Content Delivery in Delay Tolerant Networks,” IEEE Trans. on Mobile Computing,
vol. 14, no. 4, pp. 755-765, 2015.

M. May, V. Lenders, G. Karlsson, and C. Wacha, “Wireless Opportunistic Pod-
casting: Implementation and Design Tradeoffs,” in Proc. ACM CHANTS, 2007,
pp. 75-82.

C. Boldrini, M. Conti, and A. Passarella, “ContentPlace: social-aware data dissem-
ination in opportunistic networks,” in Proc. ACM MSWiM, 2008, pp. 203-210.
A. Keranen, J. Ott, and T. Karkkainen, “The ONE Simulator for DTN Protocol
Evaluation,” in Proc. IEEE INFOCOM Workshop on Emerging Design Choices in
Name-Oriented Networking (NOMEN), 2013.

A. Vahdat and D. Becker, “Epidemic Routing for Partially-Connected Ad Hoc
Networks,” Duke University, Tech. Rep. CS-200006, May 2000.

T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and Wait: An Efficient
Routing Scheme for Intermittently Connected Mobile Networks,” in Proc. ACM
SIGCOMM WDTN, 2005, pp. 252—259.

J. Leguay, T. Friedman, and V. Conan, “DTN Routing in a Mobility Pattern
Space,” in Proc. ACM SIGCOMM WDTN, 2005, pp. 276-283.

H. Zhou, J. Wu, H. Y. Zhao, S. J. Tang, C. F. Chen, and J. M. Chen, “Incentive-
Driven and Freshness-Aware Content Dissemination in Selfish Opportunistic Mo-
bile Networks,” in Proc. IEEE MASS, 2013, pp. 333-341.

E. Yoneki, P. Hui, S. Chan, and J. Crowcroft, “A Socio-Aware Overlay for
Publish/Subscribe Communication in Delay Tolerant Networks,” in Proc. ACM
MSWiM, 2007, pp. 225-234.

A. Socievole, E. Yoneki, F. D. Rango, and J. Crowcroft, “ML-SOR: Message rout-
ing using multi-layer social networks in opportunistic communications,” Computer
Networks, vol. 81, no. 4, pp. 201-219, 2005.

V. Lenders, G. Karlsson, and M. May, “Wireless Ad Hoc Podcasting,” in Proc.
IEEE SECON, 2007, pp. 273-283.

F. Li and J. Wu, “MOPS: Providing Content-Based Service in Disruption-Tolerant
Networks,” in Proc. IEEE ICDCS, 2009, pp. 526-533.

L. Yin and G. Cao, “Supporting Cooperative Caching in Ad Hoc Networks,” IEEE
Trans. on Mobile Computing, vol. 5, no. 1, pp. 77-89, 2006.

E. Nordstrom, C. Rohner, and P. Gunningberg, “Haggle: Opportunistic mobile
content sharing using search,” Computer Communications, vol. 48, no. 15, pp.
121-132, 2014.

15

16.

17.

18.

. Y. S. Wang, J. Wu, and M. J. Xiao, “Hierarchical cooperative caching in mobile
opportunistic social networks,” in Proc. IEEE GLOBECOM, 2014, pp. 411-416.
H. Zhu, L. Fu, G. Xue, Y. Zhu, M. Li, and L. M. Ni, “Recognizing Exponential
Inter-Contact Time in VANETS,” in Proc. IEEE INFOCOM, 2010, pp. 1-5.

W. Gao, G. Cao, A. Iyengar, and M. Srivasta, “Supporting Cooperative Caching
in Disruption Tolerant Networks,” in Proc. IEEE ICDCS, 2011, pp. 151-161.

J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau, “Crawdad
data set cambridge/haggle (v. 2009-05-29).”

