Defending against Flooding Attacks in the Internet of Drones Environment

Cong Pu and Pingping Zhu Dept. of CSEE, Marshall University Huntington, WV 25755, USA puc@marshall.edu zhup@marshall.edu

Outline

- Introduction & Motivation
- Related Work
- Proposed Flooding Attack Detection
 - System Model
 - Lightweight Distributed Detection Scheme
- Performance Evaluation
- Conclusion

The potential of drones is being constantly exploited...

- a military weapon

Introduction

MARSHALL

NIVERSITY

- an entertainment tool
- a machinery that can revolutionize mobile networks
- "Global Drone Market Report 2020-2025"
 - the international drone market is estimated to be around \$44 billion by 2024
- The demand for drones by various unites is high
 - drones can be flexibly deployed for a wide range of applications

Introduction

- To fully exploit drones, Internet of Drones (IoD) is proposed
 - mobile drones
 - stationary ground stations
 - acts as access point
 - drone-to-drone (D2D) comm.
 - drone-to-ground station (D2I) comm.

- The loD is lack of persistent connectivity
 - between drone and drone, and between drone and ground station

- store-carry-and-forward strategy the most promising candidate for delivering data in the IoD a drone stores the received packets in the storage, carries them while flying around, and forwards them to the next-hop drone or destination (i.e., ground station)

Motivation

- As a result of high mobility and resource constraints, the IoD is vulnerable to flooding attacks
 - an adversary sends an excessive amount of packets (original or replica) to legitimate drones
 - draining the limited IoD resources such as communication bandwidth and drones' storage space
- Flooding attacks has serious consequences
 - I. the link expiration time (for D2D and D2I) is short
 - a mass of attack packets waste precious commu. time
 - 2. the storage capacity of drones is limited
 - buffering attack packets prevent from storing genuine packets
 - 3. the battery energy of drones is constrained
 - receiving and sending attack packets consume energy power

Motivation (cont.)

- Flooding attacks are an old research topic in diverse environments
 - traditional computer network
 - named data networking
 - wireless ad hoc network
 - vehicular ad hoc network
 - etc.

- no/low mobility is considered
- exiting schemes do not apply in IoD

- In addition, there is no available work concentrating on flooding attacks and their countermeasures in the IoD
 - our work fill this research gap

Our Contribution

- This paper
 - proposes a lightweight distributed detection scheme (Lids) to defend against flooding attacks in the IoD environment
 - I. each drone counts the number of packets that it has sent within a predefined time interval and shares the self-counting report with other drones during contacts
 - 2. the receiving drones store the self-counting reports while flying and send them to nearby ground station which will check the consistency of self-counting reports to detect flooding attacks

Most Countermeasures in the IoD

- multi-path packet forwarding scheme against jamming attack [14]
 - select multiple paths between src. and des. based on network metrics
 - frequent metrics calculation results in computational overhead
- clustering based scheme against packet dropping attack [15]
 - the behaviors of drones are evaluated and converted into trust
 - non-negligible energy consumption from clustering maintenance
- blockchain based data management framework [17]
 - access control mechanism and secure session key
 - a consensus algorithm for the competition of adding block
 - has several serious vulnerabilities [18]

MARSHALL

Most Countermeasures in the IoD

- RREQ flooding attack in wireless ad hoc network [20]
 - Bayesian Inference models and detects RREQ flooding attack
 - no mobility is considered
- intrusion detection system [21]
 - deep neural network technique to combat data flooding attack
 - energy consumption due to running deep neural network tech.
- flooding attack defense scheme in vehicular network [22]
 - the packet traffic of each vehicle is monitored
 - the statistics and traffic flow rules detect flooding attack
 - dense placement of road-side unites (RSU)
 - deployment and operational costs increase

Most Countermeasures in the IoD

- Two important issues should be addressed to detect flooding attacks in the IoD
 - i. intermittent connectivity in the loD
 - taking advantage of store-carry-and-forward strategy
 - ii. integration with off-the-shelf routing protocols
 - designing countermeasure as a network layer add-on module
- This paper provides

ARSHALI

- in-depth analysis of flooding attacks
- countermeasure against flooding attack
 - Lids: Lightweight Distributed Detection Scheme
- bridge the research gap

Lids: System Model

- A genetic IoD scenario (i.e., search and rescue)
 - a set of drones is deployed in the area
 - when a drone detects an event
 - generates data packets
 - sends them to nearby ground station
 - multi-hop relays
 - end-to-end forwarding path does not always exist
 - store-carry-and-forward strategy
 - stores received packets
 - carries them while flying
 - forwards them to next-hop (i.e., drone or ground station)

Ground Station

- drone has limited storage space
 - a timer is used to purge stale packets
 - public-key cryptography [23] is being utilized

Lids: Adversary Model

- In wide-open airspace, drones can be captured
 - compromising legitimate drones
 - making them behave maliciously
- The primary goal of adversary
 - flooding a large number of original or replica packets
 - draining the limited IoD resources
 - communication bandwidth
 - drones' storage space and energy resource

MARSHALL

- When the drone (i.e., ID_a) joins the IoD, it registers at the certificate authority (CA)
 - negotiate an agreement on the packet send rate, RT_a^{pkt} .
 - RT_a^{pkt} : indicates the number of packets that the drone can send within a pre-defined time period, T^{ω} .
 - if the drone sends more packets than RT_a^{pkt} , it is suspected as adversary.
 - the CA issues a digital certificate, $CERT_a$, to the drone ID_a
 - *CERT*_a includes
 - drone's identity ID_a
 - drone's public key PU_a
 - drone's packet send rate RT_a^{pkt}
 - CA's digital signature
 - the CA also generates a private key, PR_a , and issues it to drone ID_a via a secure channel.

- When the drone (i.e., ID_a) contacts with another drone (i.e., ID_b)
 - the drone ID_a first sends scheduled packets to drone ID_b
 - the drone ID_a then sums up the number of sent packets, CNT^{pkt} , since the beginning of current time interval, T_i^{ω} .
 - the drone ID_a creates the self-counting report, $RPT_a^{T_x}$, and shares it with drone ID_b
 - $RPT_a^{T_x}$ contains
 - the count of sent packets CNT^{pkt}
 - the contact time T_x
 - drone ID_a's digital certificate CERT_a
 - drone ID_a's digital signature SIG_a
 - message authentication code MAC_{T_x}
 - $RPT_a^{T_x} = \{CNT^{pkt}, T_x, CERT_a, SIG_a, MAC_{T_x}\}$
 - $\bullet SIG_a = E(ID_a|CERT_a|PR_a)$
 - $MAC_{T_x} = H(CNT^{pkt}|T_x|CERT_a|SIG_a)$

- After receiving the report $RPT_a^{T_x}$, drone ID_b verifies MAC_{T_x} .
 - if MAC_{T_x} is valid, drone ID_b verifies SIG_a
 - if SIG_a is valid, drone ID_b retrieves the packet send rate RT_a^{pkt} and the digital certificate $CERT_a$, and compares it with the count of sent packets CNT^{pkt}
 - if $CNT^{pkt} > RT^{pkt}_a$
 - drone ID_a sends more packets than permitted
 - drone *ID_b* discards all received packets
 - save $RPT_a^{T_x}$ for ground station to detect flooding attack
 - if $CNT^{pkt} \leq RT^{pkt}_a$
 - drone ID_b carries received packets and delivers them to next-hop drone or ground station

- When drone ID_b reaches the ground station, it submits all received self-counting reports
- The ground station will compare the newly received reports with the already obtained reports
 - identify whether a drone issues multiple reports with inconsistent information
 - an adversary may disloyally report a false packet count to avoid detection
 - however, this misbehavior can be easily detected
 - the false packet count must have been reported before by adversary;
 - or the false packet count is smaller than or equal to a packet count which was reported in an earlier self-counting report
 - detect flooding attack

Lids: Lightweight Distributed Detection Scheme

Performance Evaluation

- Performance metrics
 - Detection Ratio
 - Miss Detection Ratio
 - Detection Latency
 - Energy Consumption
- Benchmark schemes
 - DAFA [12]
 - packet transmission rate
 - LFADefender [13]
 - packet loss rate, round-trip time, and available bandwidth

TABLE I		
SIMULA	TION PARAMETERS	5

Parameter	Value
Network area	$150 \times 150 \ m^2$
Number of legitimate drones	35
Number of malicious drones	5
Number of ground stations	3
Moving speed	15 meter/sec
Mobility model	Random waypoint
Communication range of drone	12.59 meters
Communication range of ground station	50 meters
Radio data rate	3 Mbit/sec
Packet size	127 bytes
Attack packet rate	1.0 - 4.0 pkt/sec
Simulation time	10,000 seconds

Performance Evaluation (cont.)

Miss Detection Ratio

Performance Evaluation (cont.)

Energy Consumption

Concluding Remarks

- Develop a lightweight distributed detection scheme to defend against flooding attacks in the IoD environment
 - each drone counts the number of sent packets and shares the self-counting report with other drones
 - the receiving drones store the self-counting reports and send them to the nearby ground station
 - the ground station evaluates all self-count reports to detect flooding attack
- Under investigation...
 - a large number of self-counting reports to be exchanged
 - data reduction strategy
 - a real-world testbed to explore the full potential of Lids

Any Questions?

