Mitigating Routing Misbehavior in the Internet of Drones Environment

Cong Pu and Pingping Zhu Dept. of CSEE, Marshall University Huntington, WV 25755, USA cong.pu@ieee.org zhup@marshall.edu

2022 IEEE 95th Vehicular Technology Conference - Spring

Outline

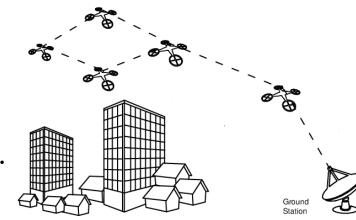
- Introduction & Motivation
- Related Work
- Proposed Routing Misbehavior Detection/Mitigation
 - System Model
 - Distributed Countermeasure
- Performance Evaluation and Analysis
- Concluding Remarks

Introduction

- Initially used as military strike weapons, drones discover a variety of civilian applications
 - goods delivery
 - aerial surveillance
 - combating COVID-19
- "Drone Market Report 2020"
 - the drone industry is expected to grow to
 \$43 billion by 2025
- The demand for drones by various unites is

high; deployed for a wide range of apps.

IEEE VTC2022-Spring (Virtual Program): Mitigating Routing Misbehavior in the Internet of Drones Environment

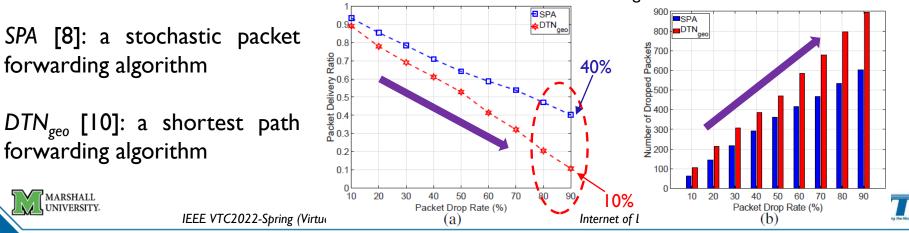


Predicted value of drones by industry

Introduction

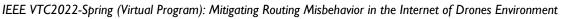
- To fully exploit drones, Internet of Drones (IoD) is proposed
 - mobile drones
 - stationary ground stations
 - acts as access point
 - drone-to-drone (D2D) comm.
 - drone-to-ground station (D2I) comm.
 - exploiting intermittent connect.

- The IoD is lack of persistent connectivity
 - between drone and drone, and between drone and ground station


- store-carry-and-forward strategy the most promising candidate for delivering data in the IoD a drone stores the received packets in the storage, carries them while flying around, and forwards them to the next-hop drone or destination (i.e., ground station)

Motivation

- Routing protocol: efficient info. sharing and team performance
- As a result of high mobility and resource constraints, the IoD is vulnerable to routing attacks
 - an adversary strategically misbehave by dropping the packets
 - saving its energy power or launching attacks
- Routing attacks/misbehaviors degrade network performance
 - packet delivery ratio (PDR) reduction; dropped packets increase
 - preliminary experiments (SPA [8] and DTN_{geo} [10])


Motivation (cont.)

- Routing attacks are an old research topic in diverse environments
 - traditional computer network
 - mobile ad hoc network
 - wireless ad hoc network
 - vehicular ad hoc network
 - etc.

- existing countermeasures
 - monitoring-based
 - acknowledgment-based
 - bait-based
 - cryptography-based

- no/low mobility is considered
- exiting schemes do not apply in IoD
- In addition, there is no available work concentrating on routing attacks and their countermeasures in the IoD

MARSHALL - OUR work fill this research gap in the community

Our Contribution

- This paper
 - proposes a distributed countermeasure (*Counter^{Romir}*) to detect / mitigate routing misbehavior in the IoD environment
 - I. a drone keeps the previous signed communication invoice and shares it with the next-hop drone so that the next-hop drone can detect whether the drone has dropped any packets
 - 2. each drone saves and sends a small number of past communication invoices to the ZSP which can detect the misstating drone who misstates its communication invoices to avoid detection
 - extensive simulation experiments showing *Counter^{Romir}* is an efficient approach to mitigate routing misbehavior in the IoD

Most Countermeasures in the IoD

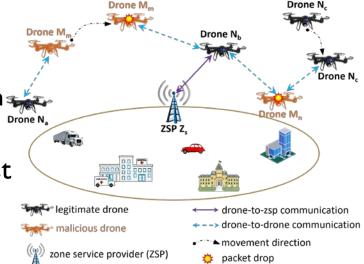
- monitor-based approach [15,17,18]
 - implicitly monitor the activity of next-hop node
 - determine whether it forwards the recently received packets
 - depends on stable connectivity between sender and receiver
 - difficult to achieve in the IoD environment
- acknowledgment-based approach [16,19,20]
 - explicit acknowledgement packet is required to confirm the receipt of packet from the receiver
 - relies on stable end-to-end routing path
 - not applicable in the IoD environment
- bait-based approach [7,21]
 - lure adversaries to launch attack with fictitious information
 - "fake" packets might get lost during the transmission

• the high mobility of drones in the IoD environment IEEE VTC2022-Spring (Virtual Program): Mitigating Routing Misbehavior in the Internet of Drones Environment

Most Countermeasures in the IoD

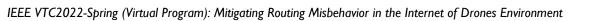
- trust management scheme [22]
 - a fuzzy trust scheme examining node's trustworthiness and converge trust, reward, and punishment values.
 - the trust evaluation process relies on neighbor monitoring
 - the cluster-head selection incurs extra communication overhead
- our approach Counter^{Romir} borrows the idea of store-carry-andforward mechanism and delay tolerant networking technique
 - for each drone
 - I. keeps the previous signed communication invoices
 - 2. shares them with the next-hop drone or nearby ZSP
 - 3. detect the routing misbehavior or misstating drones
 - a network-layer approach which can be implemented as an add-on to existing routing protocols (e.g., SPA [8], DTN_{geo} [10], etc.)
 - the first distributed approach against routing misbehavior in the IoD

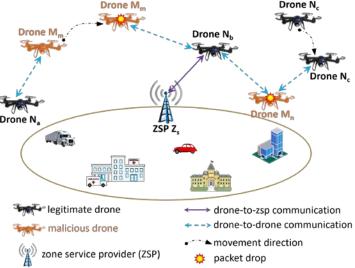
Most Countermeasures in the IoD


- Four important issues should be addressed to detect routing attacks in the IoD
 - i. intermittent connectivity in the loD
 - store-carry-and-forward & delay tolerant networking techniques
 - ii. routing attacks/misbehaviors
 - keeps signed communication invoice
 - iii. misstating drone (fabricating communication invoice)
 - sharing invoices with ground station
 - iv. integration with off-the-shelf routing protocols
 - designing countermeasure as a network layer add-on module
- This paper provides
 - in-depth analysis of routing attacks
 - distributed countermeasure against routing attack
- MARSHALL bridge the research gap in the community

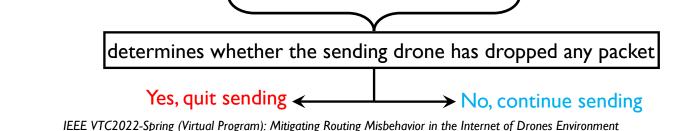
Counter^{Romir}: System Model

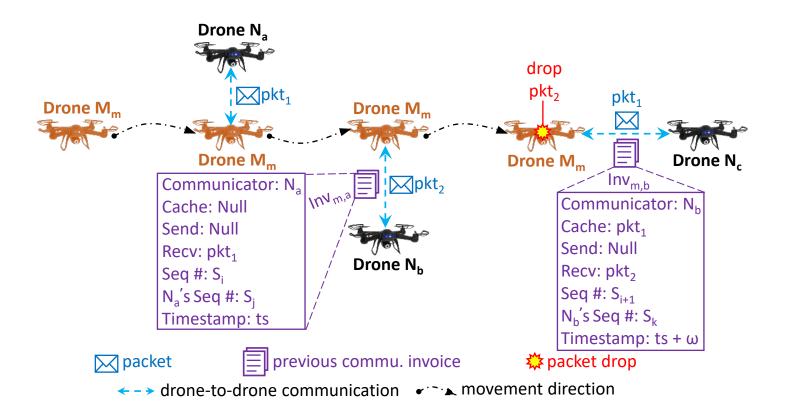
- A generic IoD scenario (combating COVID-19 pandemic)
 - a set of drones is deployed in the area
 - when a drone detects an event
 - generates data packets
 - sends them to nearby ground station station
 - multi-hop relays
 - end-to-end path does not always exist
 - store-carry-and-forward strategy
 - stores received packets
 - carries them while flying
 - forwards them to next-hop (i.e., drone or ground station)
 - drone has limited storage space
 - a timer is used to purge stale packets
 - public-key cryptography [26,27] is being utilized





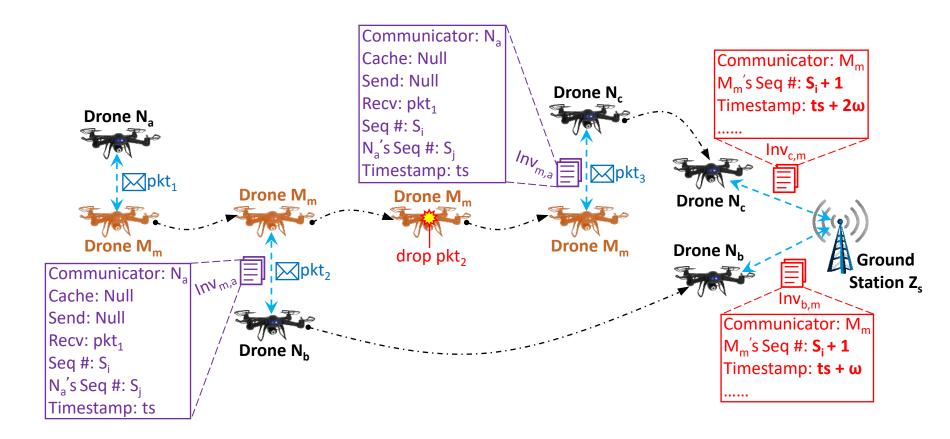
Counter^{Romir}: Adversary Model


- In wide-open airspace, drones can be captured ("anti-dronegun")
 - compromising legitimate drones
 - making them behave maliciously
 - sending it back to the mission area
- The primary goal of adversary
 - degrade the network performance
 - strategically dropping the received packets
 - saving energy power or launching attacks
 - collusive routing attacks are not considered
 - a small number of malicious drones might collude together to drop the packets without being detected



- When two drones contact,
 - exchange packets to be sent to next-hop drone
 - create communication invoice
 - communicators' ID
 - timestamp of communication
 - unique communication sequence number
 - what packets are in their caches before the communication
 - what packets they receive and send during the communication
 - their digital signatures
 - keep previous communication invoice
 - share next-hop drone with the following
 - previous communication invoice; the vector of packets in its cache

MARSHALL UNIVERSITY. **communication invoice:** a certified record that contains all communication related information of two drones.

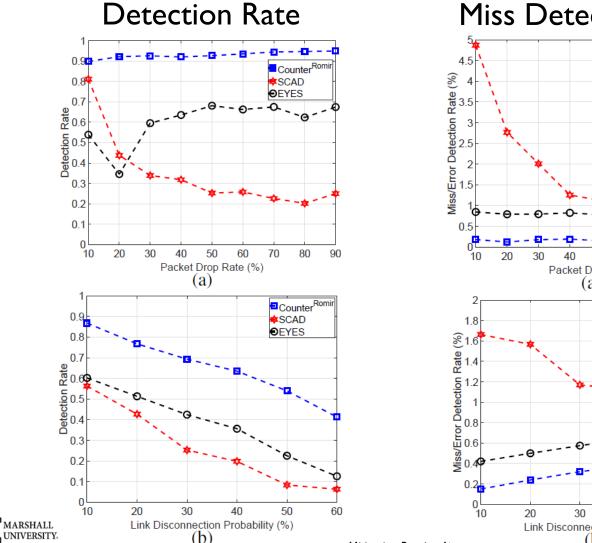

- A malicious drone might share the incorrect communication invoice
 - cover up its packet dropping activity
 - avoid detection

communication invoices

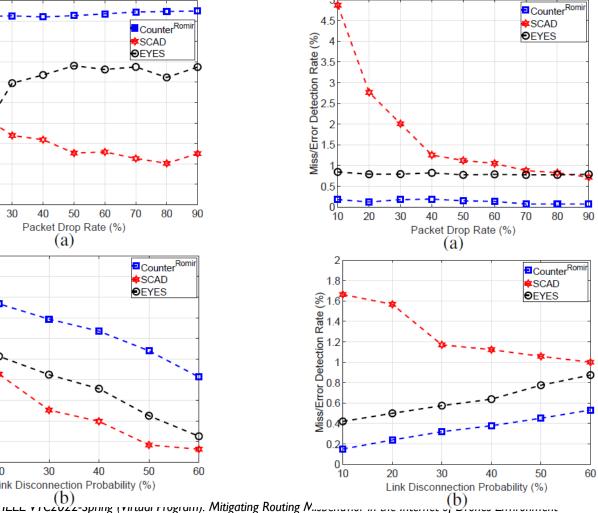
inconsistent

- ZSP detects the misstating activity of malicious drone
 - assign a unique comm. seq. number to each communication
 - the same seq. number will not be used twice
 - e.g., Ist seq. #: I, 2nd seq. #: 2, 3rd seq. #: 3,
 - 2³² possible seq. # large enough for packets
 - basic idea of detecting misstating activity:
 - each drone
 - I. saves a small number of invoices of communications with other drones
 - 2. sends them to ground station for verification

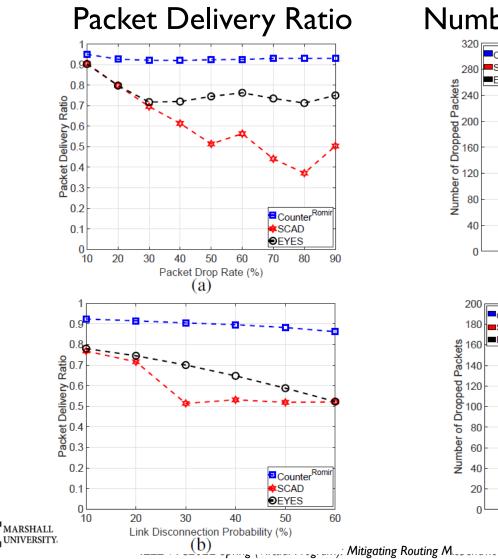
Performance Evaluation


- Performance metrics
 - detection rate
 - miss/error detection rate
 - packet delivery ratio
 - the number of dropped packets
- Benchmark schemes
 - EYES [15]
 - monitor-based approach
 - SCAD [16]
 - acknowledgement-based approach
- Simulation environment
 - OMNeT++ [8]
 - event-driven network simulator

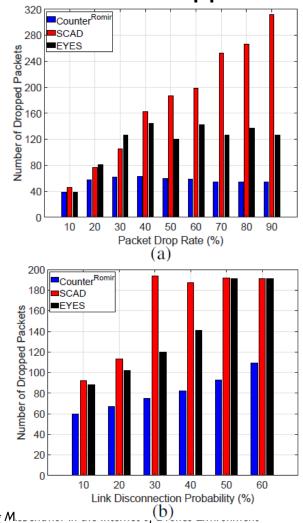
Algorithm 1: Routing Misbehavior Countermeasure Input: Inv_{m,a}, Ca_m, Inv_{b,m}, Inv_{c,m} /* drone detects packet dropping attack */ 1 Function DroneDetect (Inv_{m.a}, Ca_m): $/* Inv_{m,a}[Ca_m]$ is the vector of cached packets at the beginning of previous communication; Ca_m is the vector of cached packets at the beginning of current communication. /* pkt indicates the packet. if $pkt \in (Inv_{m,a}[Ca_m] \cup Inv_{m,a}[Rec_m])$ and $pkt \notin Ca_m$ 2 and $pkt \notin Inv_{m,a}[Sen_m]$ then detect packet dropping misbehavior; 3 4 else 5 exchange packets; end /* ZSP detects commu. invoice misstating */ 7 Function ZSPDetect (Inv_{b,m}, Inv_{c,m}): if $Inv_{b,m}[TS] < Inv_{c,m}[TS]$ then if $Inv_{b,m}[Seq_m] \ge Inv_{c,m}[Seq_m]$ then 9 detect communication invoice misstating; 10 broadcast Alarm packet; 11 12 end 13 end if $Inv_{b,m}[TS] > Inv_{c,m}[TS]$ then 14 if $Inv_{b,m}[Seq_m] \leq Inv_{c,m}[Seq_m]$ then detect communication invoice misstating; 16 broadcast Alarm packet; 17 end 18 19 end



Performance Evaluation (cont.)



Miss Detection Ratio



Performance Evaluation (cont.)

Number of Dropped Packets

Concluding Remarks

- Developed a distributed countermeasure (Counter^{Romir}) to detect / mitigate routing misbehavior in the IoD.
 - a drone keeps the previous signed communication invoice and shares it with the next-hop drone to detect any packet dropping activity
 - each drone saves and sends a small number of past communication invoices to the ground station which can detect the misstating drone
- Counter^{Romir} achieves
 - 90% detection rate
 - packet delivery ratio above 90%,
 - Iower miss/error detection rate
- Under investigation...
 - a large number of communication invoices to be exchanged
 - data reduction strategy
 - a real-world testbed to explore the full potential of *Counter*^{Romir}

Any Questions?

Email: cong.pu@ieee.org

